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DIVERSITY COMBINING FOR FREQUENCY-HOP SPREAD-SPECTRUM
COMMUNICATIONS WITH PART:AL-BAND INTERFERENCE AND FADING

p Catherine Marie Keller, Ph.D.
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" University of Illinois at Urbana-Champaign, 1985
ABSTRACT
-

This thesis presents results on the evaluation of several diversity combining techniques

that are suggested for frequency-hop (FH) communications with partial-band interference and

r fading. The analysis covers systems with M -ary orthogonal signaling and noncoherent demo-
dulation. The partial-band interference is modeled as a Gaussian process. although some of the

results also apply to general (non-Gaussian) partial-band interference. The performance meas-

. ures we use 1o evaluate the diversity combining techniques are th; narrowband interference
rejection capability and the signal to noise ratio requirement over the entire range of interfer-

ence duty factors. We evaluate the exact probability of error for each of the diversity combin-

ing techniques studied.

The performance of the optimum combining technique for receivers with perfect side
o information is established. It is shown that for receivers with perfect side information, the sys-
tem performance does not change significantly with the choice of the diversity combining tech-
nique. However, the same schemes that work well in receivers with perfect side information
perform poorly in receivers without side information. The goal of this work is to find and
analyze diversity combining schemes that do not use side information. but that perform nearly

as ‘vell as the optimum combining technique.

Clipped linear combining is proposed as a diversity combining technique for receivers
witliout side information. The numerical resuits demonstrate that clipped linear combining can

perform nearly as well as the optimum combining technique in terms of both narrowband
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interference rejection and signal to noise ratio requirement. However. knowledge of the signal
output voltage is required to set the clipping level. We analyze two alternative diversity com-
bining techniques that do not have this requirement. These diversity combining schemes use
ratio statistics in a ratio threshold test to determine the quality of each diversity reception. It
is shown that the ratio threshold test with diversity combining provides good narrowband
interference rejection, but at the expense of an increased signal to noise ratio requirement near
full-band interference. Although the ratio threshold test with diversity combining does not

achieve the optimum performance, it is an effective, as well as practical, scheme for use in FH

communication systems with partial-band interference and fading.
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CHAPTER 1
N INTRODUCTION .
:;-_f Diversity transmission is often employed to provide reliable communication in the pres-

ence of fading or partial-band interference. We consider a system in which the diversity recep~

tions are first demodulated by a noncoherent matched filter followed by an envelope detector:

this is equivalent to the square root 6f the sum of the squares of the outputs of an inphase-
quadrature (I-Q) square-law demodulator. The envelope detector outputs corresponding to the
diversity receptions of a given data symbol are then combined in some way to form the deci-
sion statistics for the receiver. Equivalent block diagrams for the demodulator and diversity
combiner are shown in Figures 1.1 and 1.2. Except for I-Q magnitude-law combining, all of the

diversity combining techniques considered in this thesis fit these models.

The performance of the diversity transmission system depends on the way in which the
diversity receptions are combined. The purpose of this research is to investigate various diver-
sity combining techniques for applications to noncoherent frequency-hop (FH) communication

systems with partial-band interference and fading.

Some of the methods for combining the diversity receptions are only useful when side
information is available at the receiver. By side information. we mean information concerning
the presence or absence of interference on a given diversity reception. Other studies have
shown that when side information is available, coding and diversity may be used to virtually
eliminate the effects of narrowband interfererice. Many codes have been studied [1}-[5], but

v Reed-Solomon coding is particularty attractive for this application.

Square-law combining has been studied 2xtensively for use in noncoherent systems. This
is in part because it is the optimum noncoherent combining technique for Rayleigh fading [6]-
L [7]). and in part because its analysis is easier than most other combining methods. However,

square-law combining is not optimum for other types of fading or for channels with partial-
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X band interference. In Chapter 2, we study the optimum noncoherent combining technique for

Gaussian partial-band interference. as well as four suboptimal combining schemes including
. square-law combining. Square-law combining. linear combining, square-root combining, I-Q

magnitude-law combining, and optimum combining are compared for receivers with side infor-

mation.

Side information is not always available at the receiver. The requirement to extract side
information -increases the receiver complexity, and there is always concern about the reliability
of the side information. Some diversity techniques that work well with side information per-
form poorly when there is no side information. Because of these considerations, diversity com-
bining techniques that do not require side information from external sources are particularly
attractive. In one such diversity combining scheme. called clipped linear combining, the
envelope detector outputs of each diversity reception are clipped before they are combined. The
role of the clipper is to constrain the effects of strong narrowband interference. Clipped linear

combining is analyzed in Chapter 3.

Although clipped linear combining is very effective against partial-band interference,
there 1s a practical disadvantage to this diversity combining scheme. The clipping level depends
on the signal output voitage (i. e., the envelope detector output voltage due to signal only).

This signal output voltage may be difficult to measure in practice.

It 1s desirable to employ diversity combining techniques that do not depend on the
received signal power. One such diversity combining technique uses Viterbi's ratio threshold
‘est N,-.i00 In the rauo threshold test. the ratio statistic for a given diversity reception is the
ratio 1 the .argest en.elope detector output to the second largest envelope detector output. We

1S uss severai diversity combining techniques that use the ratio threshold test.

In “he swstem that uses the ratio threshoid test with linear combining. a diversity recep-

.on :s rejected if its rauo statistic is less than a prescribed threshold. If the ratio is greater

than the threshold. the diversity reception is accepted. If at least one diversity reception is




accepted. then only the accepted diversity receptions are combined. If all diversity receptions
are rejected, then all of them are combined and a hard decision is made. We analyze the ratio

threshold test with linear combining for systems with binary orthogonal signaling.

An alternative scheme is to make a hard decision on each accepted diversity reception.
This is followed by majority logic decoding of all accepted diversity receptions [10]. If a tie
occurs among the accepted diversity receptions, or if all diversity receptions are rejected. a ran-

dom guess is made.

Improvement is possible for the ratio threshold test with either linear combining or
majority logic decoding by employing other strategies if all the diversity receptions are rejected
or if a tie occurs. In these situations. the ratio statistics for the diversity receptions may be
used again. For both linear combining and majority logic decoding. we examine the strategy of
basing the decision on the diversity reception with the largest ratio for the situation in which

all diversity receptions are rejected.

The ratio threshold test is also considered for use in systems with M -ary orthogonal sig-
naling. A hard decision is made on each diversity reception. The ratio threshold test is
emploved to determine which diversity receptions to include in the decision process. Then. the
symbol with the most decisions in its favor, out of the accepted diversity receptions. is chosen.
These diversity combining techniques based on the ratio statistic are examined in Chapter 4.

where theyv are compared to clipped linear combining and optimum combining.

For partial-band interference. the interference duty factor is the fraction of the frequency
band of the FH svstem that is occupied by the interference. Similarly. the interference duty
factor represents the fraction of the time that partial-time interference is present in a system
which uses time diversity. That is, although we give results for FH systems with partial-band
interference. the results also apply to systems employing time diversity. achieved by interleav-

ing, with partial-time interference.
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Much of the work done on the analysis of FH systems with partial-band interference has
dealt with the the worst-case system performance [3]-[S]. [8]-{14]: intentional partial-band
jamming is the main concern in these studies. The worst—case duty factor for the interference
and the corresponding system performance depend on the diversity level, the signal to noise
ratio, the code used. and the specific diversity combining technique employed by the system.
The analysis of the worst-case situation is rather difficult. In an earlier study [4], the worst-
case interference duty factor was approximated by the interference duty factor that maximizes
the Chernoff bound for the probability of error. This approximation of the worst-case interfer-
ence has been used in other works. such as [5] and [12]. However. it has been shown that the
Chernoff bound is not tight [2], [13], and that the exact value for the worst-case partial-band

interference duty factor is not the same as the Chernoff bound value [14].

In this research, we examine how well the diversity combining system performs as a
function of the duty factor of the partial-band interference. This type of analysis is motivated
in part by the fact that partial-band interference is not always due to hostile jamming. For
example. narrowband transmitters that operate in the same frequency band as the FH system
are a source of partial-band interference. Multiple access interference is another source of
partial-band interference {1]. We are interested in combining techniques that mitigate the effects

of unintentional jamming and that force a hostile jammer to adopt expensive strategies in order

1o be effective.

There are two primary system performance measures that we use throughout this thesis.
For each value of the partial-band interference duty factor, we compute the signal to noise
ratio required to achieve a given error probability. The maximum signal to noise ratio required
over the range of duty factors is one system performance measure of interest. It is desirable 10
minimize this maximum signal to noise ratio: at the same time, it is desirable for the maximum
to occur at as large an interference duty factor as possible. We would like the worst-case duty

factor to be unity without significantly increasing the maximum required signal to noise ratio
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(11. [2]. In practice, full-band jamming of a wideband spread-spectrum communications system

1S more expensive than narrowband jamming.

We are also interested in the system’s narrowband interference rejection capability. This
is measured in terms of the largest number, such that a given error probability can be achieved
in the presence of interference for any duty factor less than that number. A system has good

narrowband interference rejection if this number is large.

In addition to partial-band interference. the communications channel may exhibit fading.
An analysis of noncoherent communications in the presence of nonselective Rician and Rayleigh
fading and partial-band interference was given in [1]. For the system with diversity. side
information was assumed to be available and square-law combining was used. In Rayleigh fad-
ing. this is the optimum scheme to use. Chapter 5 is devoted to an extension of the results of
[1]. We examine the performance of the diversity combining schemes proposed in Chapter 4 for
channels with partial-band interference and nonselective fading. The purpose of this study is

10 demonstrate how well these diversity combining schemes perform in a fading environment.




CHAPTER 2

DIVERSITY COMBINING FOR RECEIVERS WITH SIDE INFORMATION

In this chapter, we discuss diversity combining techniques for systems in which perfect
side information is available at the receiver. I-Q square-law combining, ;\rhich has been studied
for this application in [1}-[2). [11}-{12), is compared with linear combining and square-root
combining. We also introduce the suboptimum I-Q magnitude-law receiver and describe I-Q
magnitude-law combining. One motivation for these alternative diversity combining schemes is
their superiority in the presence of a one-dimensional tone jammer. Consider a system which
employs M -ary frequency-shift keying/ (FSK). A one-dimensional tone jammer affects only
one of the M -ary tones on a given diversity reception. The jammer is present on a given diver-
sity reception with probability p. The jammer power is fixed. so that when the jammer is
present, the power applied is the average jammer power divided by p. In square-law combin-
ing, the decision statistics are the sums of squares. In linear combining. the decision statistics
are the sums of linear terms. Given that the jammer power applied to a diversity reception
overwhelms the signal power, especially if p is small, a jammed diversity reception will be
given more emphasis in a sum of squares than in a sum of linear terms. Thus, it seems, intui-

tively at least. that linear combining may be better than square-law combining in a jamming

environment.

Another motivation for employing these alternative diversity combining schemes is that
for certain applications linear combining and I-Q magnitude-law combining are easier tc imple-

ment than square-law combining. Unfortunately, they are more difficult to analyze than

square-law combining.

None of the combining schemes discussed so far is the optimum combining scheme for
Gaussian partial-band interference. In this chapter. we include a description of the combining

scheme that is optimum for a system with perfect side information. The performance of the
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suboptimum combining schemes are compared with the performance of the optimum combining

scheme.

2.1 System Model

We consider a noncoherent system with M -ary orthogonal signaling and diversity L.
The interference is additive Gaussian noise and is present on a given symbol with probability p.
With probability 1—p. the symbol is received with no interference. This model is based on the
assumption that the quiescent noise level due to thermal noise or other wideband noise sources
is negligible. The partial-band interference is the primary source of noise. In a frequency-hop
system, p represents the fractional bandwidth occupied by the partial-band interference. The

noise power spectral density is ip—lN , across that fraction of the band. Thus. the average
2
power spectral density is lNI. If p=1, the channel is the additive white Gaussian noise
2

(AWGN) channel with two-sided power spectral density IN .-
2

When diversity and side information are employed, the receiver can ignore the diversity
receptions that have interference., and it can extract the data from the noise-free diversity
receptions. If all the diversity receptions of a symbol are noisy. they are combined and a deci-
sion is made on which M -ary symbol was sent. For this model. svmbol erro:s are possible only
when all diversity receptions of the given symbol have interference. The interference is present

on all of the diversity receptions with probability pI' .

Given that all diversity receptions have interference present, the diversity combiner in the
receiver takes each demodulator output, processes it in some way. and then adds the processed

diversity receptions. For example. in square-law combining and in linear combining. the demo-

dulator consists of a filter followed by an envelope detector. In square-law combining, the
demodulated diversity receptions are squared before they are added. In linear combining, the
demodulated diversity receptions are added directly. Block diagrams for a receiver with

square-law combining and for a receiver with linear combiner are shown in Figures 2.1 and 2.2.
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Given that the symbol O is sent. the symbol error probability for the diversity system with

perfect side information can be written as [2]

M =1
2, =pL 1--./:° fou')(x) l./: fku')(y)dy] dx|. (2.1)

For each k. the densities fk (£ x) are the density functions of the outputs of the diversity
combiner. These densities are the (L —1)-fold self-convolution of f, (%), which are the den-
sity functions for the processed diversity receptions before the combiner takes their sum. (An
r -fold self-convolution of f is f if r=0.itis f*f if r=1,itis f*f*f if r =2, etc.) These

density functions depend on the combining technique employed in the system.

For a given symbol error probability p_. the parameter p' is such that for all p less than
p. p, can be achieved regardless of the type of interference [1}-{2]. The parameter p does not
depend on the statistical distribution or the power level of the interference. It is desirable to
have p. as close to unity as possible, indicating that the system can eliminate detrimental
effects of narrowband interference. For a system with side information but no coding, the

/L

value of p. for diversity L and symbol error probability p, is p, ~. All the diversity combin-

ing schemes studied in this chapter have p. = p:m._

2.2 A Description of Several Diversity Combining Techniques

We compare square-law combining, linear combining, square-root combining, and [-Q
magnitude-law combining employed in diversity systems in the presence of Gaussian partial-
band interference with duty factor p. If interference is present on all L diversity receptions of
a transmitted symbol, then all L diversity receptions are combined. A decision is made based

on the statistic that is the combination of the diversity receptions.

In a system emploving square-law combining, the squares of the outputs of the envelope
detectors are added [2]. This is equivalent to adding the outputs of an [-Q square-law detector.

Figure 2.1 shows a block diagram of a receiver using square-law combining. Given that the

svmbol O is sent, the decision statistics are
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L

Z,=T(x,, +v V41, (2.2a)
=1
L
Z, = YX2+r}2, 1Sk SM-1 (2.26)
=1
where
v = \/Z(E‘ IN, Jp/L
= /2 log,M (E, /N, )p/L. (2.3)

The quantity £, is the symbol energy. £, is the bit energy. and E /L and E, /L are the symbol
energy and bit energy per diversity transmission. {X, ,.Y, ,0Sk SM—~11<ISL} are
mutually independent zero-mean, unit-variance Gaussian random variables. The densities for

z . 0<k €M —1 are well-known and are given by [15]

Ent 2
fn(‘- (x) = _1_( f ) 2 exp(:ﬂ.l'.) IL _l(\/xsz ). x>0, (2.42)
2 viL 2 '
and
. -t .
£y = exp(=2). y 20,1k SM~1, (2.40)
2H (-1 2

where / (-) is the v-th order modified Bessel function.

For linear combining. the decision statistics are the sums of the outputs of the envelope
detectors. A block diagram of a receiver with linear combining is shown in Figure 2.2. Given

the svmbol O is sent, the decision statistics are

Zn = ZJ(‘YO_[ tv )2 + )"02,1 (2'53)
!

Z, = LJXZ, +Y?, 1Sk SM-L (2.5b)
r=1

Thus, Z; is the sum of L Rician distributed random variables for £ =0. and Z; is the sum of L

Ravleigh distributed random variables for kK >0. For L >2. closed form analytical expressions

for the densities of Z, are not known: they are found by using numerical techniques.
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+ exp[—(x +v (sin 8—cos 9))2/4] [o( v (cos O+sin 8)—x )« v (cos 8+sin B)+x )} (2.8a)
= 7 7
‘ + expl—(x +v (sin §+cos 8))Ya) [0 (=X (cos 6—sin 8)—x -0 (=Y (cos 8—sin 0)+x )id 6. x 0.
) 2 V2

and
5 2
’ £ = e (Lo L)) y20. 1<k <M1, (2.8b)
- VT 2 V2

‘v

where Q (-) is the complementary cumulative Gaussian distribution function. The densities for

-

- the statistics in (2.7) are the (L —1)-fold self-convolutions of f, (%) for each k . and are com-

puted with numerical techniques.

Consider the probability of error for the [~Q magnitude-law receiver with diversity level
[ 1 in AWGN. This performance is not widely known, so we briefly discuss it here. That is, we
discuss the performance of the system with no diversity and with p=1. We compute the exact

average probability of error given the densities in (2.8). Also, we compute the worst-case per-

l formance for the I-Q magnitude-law receiver which is found by substituting 6=—i for
' 2

i=0.1.2, or 3 in the densities of (2.8). That is. the minimum expected value of Z  in (2.7a)
occurs at any of these values of 8. In Figures 2.4, 2.5, and 2.6, we compare the probability of
- error of the [-Q square-law receiver to that of the I-Q magnitude-law receiver in AWGN (p=1)
for L =1. and M =2, 16. and 64. Notice that over the range of signal to noise ratios shown. the

1-Q magnitude-law receiver performance is not much more than 1 dB worse than the [-Q

square-law receiver performance.

2.3 Optimum Diversity Combining

Consider, once again, diversity levels greater than or equal to 1. The decision statistics for

> the opuumum diversity combin:ng technique of envelope detector outputs in AWGN are known
because of their application in radar detection problems, and they are easily derivable (16]}-[19].

[ : Given that the symbol O is sent. the decision statistics are
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L
=TI (v V(X +v P+Y2)

(2.9a)
=1
L
§ =TI (vVX2 +Y2) . 1Sk SM-1. (2.9v)
=1

Now consider partial-band interference with duty factors other than p=1. The decision statis~
tics in (2.9) are also the optimum decision statistics for a system with perfect side information
in the presence of Gaussian partial-band interference of any duty factor. This is true, because,
for systems with perfect side information, interference must be present on all diversity recep-
tions in order for the diversity receptions to be combined. The situation in which interference
is present on all diversity receptions corresponding to a given bit is analogous to the situation in

which AWGN with double-sided power spectral density %p_lN ; is present on that bit.

By taking the natural logarithm of the decision statistics in (2.9). we obtain an alternate

form of the decision statistics. namely

4

Z,=Zin(I (VR ) (2.10a)
=1
L

Z, = Zin(Z (vR, ) . 1Sk SM-1, (2.10b)

=1

where {R 1 1S €L} are the outputs of the envelope detectors matched to the signal (Rician
distributed random variables). and {R, ,: 1Sk SM—1,1SISL} are the outputs of the
envelope detectors with noise only (Rayleigh distributed random variables). Notice that these
optimum decision statistics depend explicitly on the signal to noise ratio through the parameter
v. given in (2.3). This implies that the knowledge of the received signal to noise ratio is needed

in order to apply the optimum combining technique.

For small values for its argument, the natural logarithm of the O-th order modified Besse!

function may be written as

In(/ (x)) = el 1+ 0i:0. (2.11)
4 (Y

and for large values for its argument, it may be written as
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In(Z (x)) = x = LinQ@w=x) + (8x)” + 0 (= 7). (2.12)
2

Thus. when the outputs of the envelope detectors are small or the signal to noise ratio is small,
the optimum combining technique approximates square-law combining. When the envelope
detector outputs are large or the signal to noise ratio is large, the optimum combining technique

approximates linear combining.

The symbol error probability for the optimum diversity combining technique is expressed
in (2.1). For optimum combining, the densities f, ‘L) (x) are the (L —1)-fold self-convolution

of f, “D(x ), which are given by

\ 17 ™) U7 (e )P—axviev?
fO“’(x)= — exp{——2 > . x 20, (2.13a)
v (I e ) 2v
and
- 17 ") 7N e =2’
f"‘x (x)= — ¢ exp{—[ T )]_ nld boox 20, 1Sk SM-1. (2.13b)
VLI e ) 2"

2.4 Numerical Results

We evaliuate (2.1) by numericai methods tor each of the diversity combining schemes dis-
cussed. The O-th order and 1-st order modified Rassel Iunctions are calculated by using the
polynomial approximations given :n {20! The :nverse of the O-th order modified Bessel func-
tion, needed in (2.13), is found by using iteration The accuracy of this method is checked by
comparing computer generated results with the tabies in [20]. Other orders of modified Bessel
functions, required for (2.4). are computed »v using the :ntegral Jdetimition for modified Bes:el
functions. The asymptotic approximaticns and pelynomial approximations o Q (+) given in
[20] are used to calculate the densities in (2.5). To compute the convolutions of the densi.v
functions and to compute the probability integrals, we use an arrav processor. Which
significantly speeds up the computations. See the Appendix for more information on the com-

putational tools we use and how the data caiculated for this thesis are verified.
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In Table 2.1, we give values for the bit energy to noise ratio necessary to achieve a symbol
error probability p_ of 0.1 for the example with L =3 and M =32 for square-law combining,
linear combining, square~root combining, I-Q magnitude-law combining, and optimum combin-
ing. We use a symbol error probability of 0.1 in this and many other examples, because.
although we are discussing system performance for uncoded systems. we assume that in practi-
cal applications some form of coding will be used. For example, if a (32, 10) extended Reed-
Solomon code is used, p, =0.1 corresponds to a bit error probability of 6.48.10~°. Fora system

employing a (32. 16) Reed-Solomon code, the corresponding bit error probability is 4.95 107",

As illustrated in Table 2.1, the performance is about the same for each of the combining
schemes analyzed in this chapter. By examining the results for the four diversity combining
techniques other than optimum combining. we see that linear combining is the best of the four
techniques over a large range of values of p. Square-law combining is the best of these four
over the rest of the range. From (2.11) and (2.12). we gain an intuitive explanation for the
rc2son why there is a crossover in the performance of square-law combining and linear combin~
ing in Table 2.1. Linear combining performs better at larger values of p. where the signal to
noise ratio of the operating point is large. (Since the system performance is based on symbol
detection. the symbol energy to noise density ratio should be considered as the argument in the
asymptotic analysis. The symbol energy to noise density ratio is found by adding
log, 32 = 7dB to the values in Table 2.1.) Square-law combining does better for smaller values
of p where the required signal to noise ratio is smaller. Indeed. by now examining the optimum
combining results, we see that linear combining and optimum combining have nearly the same

performance near p=1. Square-law combining and optimum combining have nearly the same

rerformance for p close to p. .

Consider the two performance measurements discussed in Chapter 1. There is no
improvement in p* for the optimum combining technique. because p* is the same for all of the

diversity combining techniques with perfect side information discussed in this chapter. Also.




Bit energy to noise ratio (in dB) required to achieve a symbol error probability of p_=0.1
for M =32 and diversity level L =3.

TABLE 2.1

P Square-Law Linear Square-Root | Magnitude-Law Optimum
0.475 -5.87 -5.79 -5.63 -5.65 -5.87
0.500 -0.62 -0.64 -0.51 -0.46 -0.66
0.600 2.50 2.42 2.52 2.61 2.41
0.700 3.19 3.09 3.18 3.29 3.08
0.800 3.41 3.31 3.39 3.51 3.30

§0.9OO 3.46 3.35 3.43 3.56 3.35
lil.OOO 3.42 3.31 3.39 3.53 3.31
TABLE 2.2

Bit energy to noise ratio (in dB) required to achieve a symbol error probability of p =0.1
for M =32 and diversity level L =5.

i[ P Square-Law Linear Square-Root | Magnitude-Law Optimum
'0.640 -5.80 -5.70 -5.49 -5.56 -5.82
10.650 ‘ -2.25 -2.21 -2.02 -2.06 -2.28
{0.700 1.53 1.49 1.64 1.65 1.45
EO.SOO ! 3.26 3.17 3.31 3.35 3.16
20.9()0 l 3.84 3.74 3.87 392 3.73
1.00();: 4.10 3.98 4.11 4.17 3.98

. rf 2‘,




linear combining is nearly optimum at large signal to noise ratios. and we do not expect that the
maximum E, /N, required over the range of p can be made much smaller. It is at the crossover
in performance of linear combining and square-law combining where the optimum combining
technique may show improvement. However, as might be expected. optimum combining does
not perform significantly better than linear combining or square-law combining at other values

of p. The differences among the five combining schemes discussed are only a few tenths of a dB.

Table 2.2 gives a comparison of the five different diversity combining schemes for L =5.

The improvement of optimum combining over linear and square-law combining at the cross-
over in performance of these suboptimum schemes is not very significant. The difference in
performance is still less than 0.1dB. In view of the examples presented. we conclude that for
systems with perfect side information. the diversity combining techniques discussed all per-
form nearly the same. It is the implementation considerations that are important in making the

decision regarding which diversity combining technique to employ.

2.5 Effects of Quiescent Noise

The results presented in this chapter are valid. given that the quiescent noise level is negli-
gible compared with the partial-band interference. For moderate levels of quiescent interfer-
ence. the performance of the diversity system will be degraded from that given, but the rela-
tive performance among the diversity combining techniques would not vary greatlv. For
quiescent noise levels comparable to the partial-band interference levels, the results would not
hold. However, if the diversity system is subject to high levels of quiescent interference. the
reliability of the side information may be questionable and a different approach should be used.
This is one of the reasons for looking at alternative diversity combining techniques that do not
require side information. Another reasor is that extracting side information from external
sources can be difficult in practice. The remainder of the thesis is devoted to analyzing systems

that do not depend on side information. and that have acceptable performance in the presence
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of partial-band interference. The performance of a system with side information is looked

upon as a goal to try to achieve for systems without side information.




i;;_ CHAPTER 3

) CLIPPED LINEAR COMBINING

- Recall from Section 2.1, that p’ is defined as the largest number such that a given error

probability can be achieved for any interference duty factor less than p° regardless of the

interference power and distribution. When the receiver has no side information and combines
all diversity receptions of a given symbol, the use of the diversity techniques discussed in
Chapter 2 actually decreases the value of p’'. A symbol error is possible even if only one diver-
sity reception has interference. Given the symbol error probability », and diversity level L. a
system with no side information and no coding has p' =1~ (1—p, )Yt This small value for
p  indicates that the diversity combining techniques of Chapter 2. used in receivers with no
side information, have practically no narrowband interference rejection capability. They per-

form poorly even for small values of p. Because ,l.p“N, is large when p is small. it may be

desirable to clip or limit the outputs of the envelope detectors. In this chapter, we analyze a
system that utilizes clipped linear combining of diversity receptions. The role of the clipper is

to constrain the effects of strong narrowband interference.

We consider the system with M -ary o-thogonal signaling. In a system with clipped linear
combining. each envelope detector output of each diversity reception is clipped at a level C
before the diversity receptions are added. Let B denote the envelope detector output voltage
due to signal only. called the signal output voltage. The clipping level is expressed as a fraction
¢ times the signal output voltage: i. e.. C =¢ 8. A block diagram is shown in Figure 3.1 for the
k -th branch of a diversity system that employs clipped linear combining. The quantities
{R. ;, 0%k SM —1, 1€ €L} are the snvelope detector outputs before they are clipped. and x
denotes min(x . C ) so that < is the output of the clipper when x is the input. The parameter
Z, 1s the combination of the diversity receptions. Given the diversity level L and the perfor-

mance level p, . p’ can be calculated as a function of the reiative cutoff valuec.



Filter

Figure 3.1.
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Block diagram for the k£ -th branch of a diversity system with clipped linear com-
bining
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3.1 Calculation of p’

] To calculate p° for this diversity scheme, we must consider general pulsed interference of

arbitrary power and statistical distribution. The worst situation for the [ -th diversity recep-
tion, given that the symbol O is sent, is R ;=0 and R, ; 2¢ B for k >0. At diversity level
L =1, p’ is equal to the symbol error probability p; for any value of ¢ interference must be
present on at least p, of the diversity receptions for there to be that fraction of errors. For
L =2 and for ¢ greater than one, an error can occur even if only one diversity reception has
interference present. while for ¢ less than or equal to one, an M -fold tie can occur. Because a
tie results in an error with probability (M —1)/M . which is approximately 1 if M is large, and
because we consider the worst-case situation to calculate p° . we assume that ties always result
in errors in this section. Clearly, for L =2, an error occurs if both diversity receptions have

interference present. We conclude that p° =1 — /1=p,.

For diversity level L =3, there are two values of p° depending on the value of ¢. For
¢ 22, an error can occur if any of the diversity receptions have interference. and so
p  =1=(1=p, )3, For ¢ <2, an error can occur if 2 or more diversity receptions have interfer-
ence, but an error cannot occur if only one diversity reception has interference. Thus. p’ is the

solution of p, =p*-+3p*(1—p) subject to the constraint 0Sp<1.

In general. if L is even. the function p° versus ¢ is broken into L /2 regions; if L is odd.
the function is broken into (L —1)/2 regions. For a given svmbol error probability. p’ is found

by solving the equations

_ 0<c<FIi. L odd
ne £ o |
ce|=t 0<c <qLL_:-}. L even

o & Ly i, L+ig _L+i+2 [i=13..L=2.L odd
i Z'_.(j)p (1=p) 'i_-.-'\c<1_—.-'—§ i=24..,L=2 L even, (3.1)

. B
.
W BT
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subject to the constraint 0€$p<1. Table 3.1 lists the values for p° as a function of ¢ for

p; =0.1 and for diversity levels 1SL £7.

Another parameter we consider that characterizes narrowband interference rejection capa-
bility is the parameter ppy;, Wwhich is defined for Gaussian partial-band interference. The
parameter P, is the largest number such that a given error probability can be achieved in the
presence of Gaussian partial-band interference of any duty factor less than pp;,. Because ppy;,
depends on the signal 1o noise ratio as well as the symbol error probability, the diversity level,

and the clipping level, it is calculated numerically for each particular example.

3.2 Clipped Linear Combining with Background Noise

We now calculate the performance of clipped linear combining in the presence of Gaussian
partial-band interference. We also allow a nonzero quiescent noise level to account for thermal
noise in the receiver and other wideband noise sources. As before, the partial-band interference
is present on a given diversity reception with probability p. and witﬁ probability 1—p. it is not
present. In either case, the diversity reception is received in the presence of Gaussian quiescent

noise. This quiescent noise has uniform power spectral density ;.N o- Thus, on the fraction of

the frequency band with interference present. the power spectral density is 1i.;:v"N,'+ .;.N o

and on the fraction of the frequency band with interference absent, the power spectral density

iS -;-J‘V' 0-

The symbol error probability for the system with clipped linear combining. given that the

symbol O is sent, may be expressed as

P, = t(if)pf (1=p)E = (3.2)
Q

= [= 7| [ fora| T ax)

The densities f, (x ) for 0Sk M —1 are the densities for the decision statistics

j L
Zo= Imin(\/(X), +BP + (Y5, )?.C)+ L min(v/(X§, + B8P +(¥§,)2.C) (3.32)

i=1 l=j+l

M 0 B0 T e B e e Bie i e e Zhen B Babe-Die tii S S
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S TABLE 3.1
’ Values of p° as a function of ¢ for various L and for p, = 0.1
5 Diversity, L Relative Cutoff. ¢ P
-\'.
1 all ¢ 0.1000
i 2 all ¢ 0.0513
3 0<c <2 0.1958
i : c22 0.0345
[ N
e 4 0<c <3 0.1426
c23 0.0260
0<c <3 0.2466
‘E 5 3 gc < 0.1122
c24 0.0208
F.
0<c <2 0.2009
6 2€c <5 0.0926
. ¢ 25 0.0174
4
0<c <3 0.2786
e 4 L) .
- 7 ch <z 0.1696
3Se<6 | 00788
s 3 c 26 ' 00149
|
[
e T T T T T T D T e L L I e
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=

Z, = imm(w/(x,{,,)2+(yg,,)2.c)+ i min(\ (XY, 2 + (Y ,?.C). 1Sk €M -1,
{=1

I=j+1 ‘

(3.3b)
where 8 is the envelope detector output voltage due to signal only, C is the clipping level. and ",
j is the number of diversity receptions with interference present. The random variables -

(X} ,.Y! :0SkSM-1,1S€]<j} are mutuﬁlly independent zero-mean Gaussian random
variables with variance o#, and {X,. Y¥,: 0Sk €M -1, j+1S! €L} are mutually indepen-

dent zero-mean Gaussian random variables with variance o°'%. The relationship between B and

oy is
v é% = 2E, /(p~'N, +N ))/L -
= V2 log;M (E, /(o= 'N; +N))/L . (3.4)
-
and the relationship between 8 and Oy is ~

vy égé_ = \2(E, INJ/L =
v

= /2 logoM (E, /N /L. (3.5) "

Jf interference is present on a diversity reception, the signal to noise ratio is v; . and if interfer-

ence is absent on a diversity reception. the signal to noise ratio is vy .

Let {R{ ,:0Sk €M —1}, denote the envelope detector outputs before clipping given

interference is present on the [ -th diversity reception. Given that the symbol O is sent, the den~ .

sity of R}, is the Rician density with parameters 8 and o, . denoted by f 0’ (x). Thatis.

2482 xB
I(x) = xexp{—Z= I . x>0.

;_
The density of the other M —1 envelope detector outputs is the Rayleigh density with parame- —

ter -, denoted by fk"(x ). That is,
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2
ix)=x exp{——x—z-}. x >0. 3.7
20’1

Similarly, given that interference is absent on the [ -th diversity reception, the envelope detec-
tor outputs before clipping are {RY,: 0Sk SM~1}. The density for RY, is f ' (x). and the
other M —1 envelope detector outputs have density f,¥(x). The conditional densities f § (x)

and f (x ) are found by replacing o? by o% in (3.6) and (3.7).

The densities in (3.6) and (3.7). and the corresponding densities for interference absent are
the density functions for the situation in which C =co (i. e., no clipper). For finite values of

C =c B. tbe density function for the sum of j clipped envelope detector outputs for the ;

diversity receptions with interference present is

fix)=E (DIGHCI~ gi(x= (j=1)C I (3.8)

for each k , where
(g GO = f ix e (). 3.9
tgi (x)]® = 8(x).

1. 05x<C
pcx) = 0 . otherwise,

and. for I > 1. [g/(x )J*’ is the (I =1)-fold self-convolution of [g{(x)]'V). The quantity G{(C)

is the area in the tail of the £ -th non-clipped envelope detector output. That is,

Gi(C)=1-FiC)
=1- ‘{;C fk"(x )dx (3.10)
= f f‘,,"(x Ydx
c

where 7;(x) is the distribution function of the envelope detector outputs before they are

clipped. In other words., G{(C) is the conditional probability that an enveiope detector output

is above the clipping levei and is clipped to level C. given that interference is present. In partic-
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ular, for k£ 0,
GHC) = e %D (3.11)

Note that [g/(x ) is not a density function. However, [g/(x )]V + 8(x =C )G{(C) is the con-

ditional density function of the k ~th clipped envelope detector output given that interference is

present.

Similarly, the density function for the sum of L —; clipped envelope detector outputs

given that interference is absent is
;N &l (L=jyteN L—j—[,N ; (L—j=)
=0

3 The functions [g¥(x )V and GY¥(C) are found by replacing o; by oy in (3.9)-(3.11). The
| density function for the sum of the L diversity receptions corresponding to the k -th symbol is

. f J(x) convolved with f ,:v (x).

To calculate the probability of error in (3.2), we can normalize the densities in (3.8) and
(3.12) with respect to &; or Oy . That is, we can let x =x /0; or we can let x =x /Oy in both
(3.8) and (3.12). For example, upon normalizing with respect to Oy . the normalized clipping
- level becomes cvy and the ratio v; /vy enters into the density function in (3.8). The result of

this normalization is that we never have to specify ;. oy . or B explicitly. The symbol error

SN
et et

probability depends upon L . M .c . E,/N,y, and E; /N, .

3.3 The Clipper Phenomenon

For diversity levels greater than 1, there are many situations, depending on the value of
C . when N; = oo is nct the worst-case interference power. To illustrate how this can be possi-

ble. consider a binary system (M =2) and assume C >0. Let {RY,: £ =0,1, 1</ €L} denote

J the envelope detector outputs after clipping for a diversity reception with interference absent

and {R{ ;1 k=0, 1, 1<! €L} denote the envelope detector outputs after clipping for a diversity

reception with interference present. Given that the symbol O is sent. the bit error probability
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can be expressed as

! & L ba -
P = L (D (1=pY " py (313) -
= :_.
r v
v where X
L=j L L) L e
P =PCLRY + ¥ R{, 2 LR + XL R (3.14)
t=1 1=l -+l 1=] I=L=j+1

is the conditional probability of error given that j diversity receptions have interference

present. For a fixed p. as N; —0, the power spectral density goes to .;.N o (whether interference

is present or absent). and
z L
o, =P(LR{, 2 LR, (3.15)
(=1 {=1

for each j. Substituting (3.15) into (3.13) gives (3.13). That is, for N; =0. p, is the same as =
(3.15). independent of p and ;. This is the probability of error for a binary system with -

clipped linear combining and diversity L in full-band additive white Gaussian noise.

Now consider what happens as N; —co. Every diversity reception with interference

present is clipped at C. That is, an upper bound on F§(C)=1—-G}(C)is

_al 2 _ay? 2 . f-.
F{) (C )se 8 /(20[)_e-(c B) /(20[)+FBI_ /ZW[Q(%)_Q(%)]. (316) -
which goes to zero as o/ goes to infinity. The bound in (3.16) is found by using /,(x )<e*. .
Thus. with probability 1, R{ ,=C given that N, =c0. Also note from (3.11) that G{(C)—1 if s
o7 =—oo. Therefore, for N; =0, we have that
»
L~ v ) L~ , c
Py, =PCLRY, +/C 2 LR, +/C) e
1=] {=1 ]
L= L=i <
=P(YR" 2 TR (3.17) )

=1 (=1
Thus. for a fixed p. interference of infinite power applied to a given diversity reception essen- :;j
tially erases that diversity reception. Bv comparing (3.14) for finite interference power to '::
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(3.17) for infinite interference power, we note that there may be situations when (3.17) is
greater than (3.14). That is, a jammer may do worse than canceling out a diversity reception.
However, it is difficult to show this analytically by using (3.14) and (3.17). Thus, we illus-
trate this by reverting to the situation in which there is no quiescent noise (i. e., the limiting

case in which N ,—0).
The conditional bit error probability given that j diversity receptions have interference
present in (3.14) becomes

L L "
25.;=P( X R{i,Z2 X R{+Z-j) (3.18)

=L —j+1 (=L —j+1

as NV =0, where § is the signal output voltage after clipping. We can write (3.18) as

LR j j R

ZDOP(ZRI >FRE L —-/IBIEIPE,). 1€<L

=1 i =1 l=1

Py, = (3.19)
L L L YA 1

LGOP(LRL,> TR IEDPE,) + 3T(C). j=L,

n=1 =1

=1

where E, is the event

7

{R612C} , n =0
{=1
E, = {INR, <O | N (RS, 2CH|. 1S <1
(=1 {=n +1
n{R.I)1<C} , n=j.
=1
In (3.19). T(C) is defined by
T(C)=(GLCHIG{(CHE. (3.20)

which is the probability of a tie given that all diversity receptions have interference present:

that is. (3.20) is the probability that all the envelope detector outputs are clipped at level C




given that j=L . We assume that such ties are correctly resolved with probability .i. The pro-

bability of the event £, is
P(E) =[FiErGicHV ™.

Notice that

P(ERL,> LR +HL=j)BIEy=0. (3.22)
=1 =]

=

It can be shown that P (E, )—0 for n >0 as o #—oo. From (3.16), we have that F}(C)—0
as o f—eo. From (3.21). F4(C )—0 implies that P(E, )=~0 for n >0. Also. F§(C )=0 implies

that G4 (C)—1 as of—eo. Because G{(C)—1 as o?—co. we conclude that lim 7(C)=1. In

g ;=0
conjunction with (3.22), (3.19). and (3.13). we have that p, =p* /2 as ¢ /—co. The interesting

thing 1o note here is that lzim P» ; =0 for j <L. That is. the conditional bit error probability

L i
given that less than L diversity receptions have interference present, goes to O as the interfer-
ence power goes to . If interference is present on all L diversity receptions, a tie is the worst

thing that results for infinite interference power.

Next we show that, for each j. p, ; in (3.19) goes to O as o f=0. First. we claim that

lim p, ; = 0. Note that we can use the union bound on p, ;:

(f.v.’")

L
< T P(R{, SR ).
=1

Since {R{ , €R{ Jc{R} . <RI Y J (R, >C}, wecan write
P(R{, SR{SP(RL,SR{ N+P(R{ ,>C)

1 -aised), 20}
=oe M0, d

which goes to zero as o7 goes to zero. Similarly. p, , —0. as o?=0 for j <L. Thus, the bit
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error probability given that j diversity receptions have interference present for j <L, is non-
zero for finite o7, and tends to O both as /=0 and as of—co. The terms p, ; for j <L are

not monotonic in & .

Our numerical examples show that in many situations these non-monotonic components
of p, in (3.13) result in the existence of a worst-case interference power other than N;=co.

For M =2. L =2. and N ,=0, we present an analytical example. We know that for L =2.
Ps =2p(1=p)py 1+P?Py 2 = P*/2

as E, /N, —0. For fixed p and C >B. we can find values of £, /N; >0 such that p; > T(TP:ET'

which implies that p, >p?/2. To show this analytically. we first find a lower bound on p; ; for

L =2 and C > 8. Observe that

py 1=P(R{>R{+B)=PUR{ >R +BI [V (R <C~B])
because

PUR{>R{+BI N (R >C—8)=0

and

(RI>R{+BY(R) <C—Bi={R{ >R} +B} [V R} <C—B}.
Thus. we may write

p,,,,=foc“’f01(x )G{ (x +B)dx 2 Fh(C—BG}(C).

It follows from J,(x )21 that

—(C2432)/(2 2 —(C =8)2 2
pb'IZe (C “+8%)/( 0‘[)[1_2 (C —8) /(201)]'

which for C =c¢ 8 and B/a; =~/(E, /N, )p gives

~(14+c2UE, IN; )pI2 ~(c2=c +1UE, IN
Pb,1?¢ c “WEy 1Ny )P/ e G NE, 1)9.

If ¢ =2, p=0.1, and E, /N; =5, then

v
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> P _
pb . 1/0.0633 > m 0-028.

. Hence. we have an example for which finite interference power gives a larger error probability 5::

than infinite interference power. <

This example for N,=0 implies the existence of examples for N,>0. To see this, let
25 (N;. N,) denote the bit error probability as a function of N; and N,. We have an example -

for which p, (N;.0) > p, (o0, 0). Because p,(N;.N,) is a continuous function of N, there -

exists an €>0 such that for No<e, p, (N;. Ny) > p,(c0, Ny). That is. the clipper phenomenon

also occurs for some range of values of 0S N <e.

Figure 3.2 is a plot of the dominant components of the symbol error probability p, . show-
ing that p; ; is not monotonic with respect to £, /N; for j <L. The conditional error proba-

bility given that all diversity receptions have interference present. p, ; , decreases monotoni- -
cally as E, /N, increases. Let e, =(IJT)P’ (1=p)!=/. The curves plotied are for ¢; p; 3. C4 P;s 4

¢s ps 5. and p; versus E,/N; for the system with M =32, L =5. and E, /N ;=18dB. The proba-

bilities p; 5. p; 1. and p; > are small compared 10 the other components of p,. The non- -

monotonicity of ¢3 p; 3 and ¢4 p, 4 affects the sum in (3.13) enough so Ehat ps is not monotonic ,

in E,/Ny. =
In Figures 3.3 and 3.4, we investigate the problem of finding the situations where the

clipper phenomenon is most prevalent. From the figures, we see that the bit energy to noise "

ratio for the maximum symbol error probability increases as p decreases: i. e., the worst-case
.V, decreases with p. For p=1, p; versus E,/N, is monotone decreasing--the worst-case NV, is
N;=o00. That is, at p=1, the phenomenon does not occur. It is at smaller values of p and larger
values of L where the phenomenon occurs. Also, as £, /N, decreases, the phenomenon is not

apparent. and for small £, /N, and large p, the phenomenon goes away completely.

Due to the non-monotonicity of p, versus £, /N; . as shown in these figures, there are two

solutions for E, /N, for some values of p,. For large values of £, /N, some prediction can be
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made as to when two solutions for E,/N; occur. That is. for large E,/N, we know that
ps —p* as N;=oo, p, >p* for a range of N;, and p, <p’ for smaller N;. Thus. we have that
for large values of signal to quiescent noise ratios. there is one solution for £, /N, if p>p,YL,
two solutions for a small region of p<p,!/Z, and no solutions for smaller p; p, can be obuained
in that region regardless of the signal to noise ratio. For smaller values of signal to quiescent
noise ratios, the clipper phenomenon still occurs. However. it is difficult to predict the region of

p where twa solutions for £, /N, exist, because (3.15) and (3.17) cannot be solved analytically

for L 22.

3.4 Numerical Results

In Figure 3.5, we demonstrate the sensitivity of clipped linear combining to the clipping
level for Gaussian partial-band interference. The figure shows curves of E, /N, versus p for
M =32 and a symbol error probability of 0.1. Suppose that the desired clipp‘ing level is equal to
the signal output voltage 3. but due to inexact measurements at the receiver caused by the com-
munications channel. the clipping level varies between 3dB above and below 8. The value of
Pma for each of the curves shown is such that for p<pp;,. a2 symbol error probability of 0.1 is
achieved regardless of the value of E,/N;. For C =8, pp;, is approximately 0.449. Notice that
this value of pm, is much better than the p’ value predicted in Table 3.1. If the clipping level
is set above the signal output voltage. py, decreases showing that some of the narrowbam:l
interference rejection capability is lost: e. g., for C =1.418. p,;,=~0.350. If the clipping level is
below the signal output voltage, then p,,, increases: e. g.. for C =0.7088, p,,,=<0.456. How-
ever, the maximum signal to noise ratio also increases. In spite of the deviation of the clipping
level from the desired value, clipped linear combining provides narrowband interference rejec-

tion capability that linear combining alone cannot.

Also included in Figure 3.5 is the performance of the system with linear combining with
perfect side information (no quiescent noise). For this system. p,,,=0.47S and p’ =0.464. The

performance of the system with linear combining with perfect side information is a lower
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bound on the performance of clipped linear combining. Clipped linear combining is nearly as
good as linear combining with perfect side information. However, just as it may be impractical
for a receiver to extract perfect side information, it may be impractical to implement clipped

linear combining if there is more than a 3dB deviation in the signal output voltage.

In Figure 3.6, the effect of increasing the diversity level is shown. The curves are for
diversity levels 1 through 6, clipping level C =8, p,=0.1, M =32, and E, /N ,=18.0dB. Nar-
rowband interference rejection becomes better as L increases, but because of noncoherent com-

bining losses. the system performance becomes worse for large p.

The sensitivity of the performance to the quiescent noise level is presented in Figure 3.7.
The curves are for signal to quiescent noise ratios £, /N, of 6dB. 12dB. 18dB and oo, for the

system with L =3, M =32, C=8, and p, =0.1 The performance curves for £, /N ,=18dB and

E, /N y=co are nearly the same.

In most of the examples in this thesis, we choose a value of symbol error probability p;
that is large (e. g.. p, =0.1). because we are assuming that coding will be employed in the sys-
tem. With p, =0.1, bit error probabilities on the order of 107 to 10™3 are readily achievable
with coding [2]. For example, p, =0.1 corresponds to a bit error probability of 4.95-10~* for a
svstem using an extended (32, 16) Reed-Solomon (R-S) :ode for error correction. For systems

using a code of rate r . the signal to noise ratios for interference present and interference absent
A d

are

v. = V2 logoM (E, /(p7IN; +N o))/L

and

vy =27 logoM (E, /N y/L .

Suppose coding is not 10 be employved in the syvstem and we wish to achieve a bit error
probability of 4.95:10™". An example of this is shown in Figure 3.8. The uncoded system

requires a symbol error probability of 9.59-10™* for the desired bit error probability. The

- o v W 2 I

f
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uncoded system has practically no narrowband interference rejection.

We next analyze tradeoffs between diversity and coding. keeping the data rate fixed. We
compare a system with a low rate (n, k ) R-S code with no diversity to a system with diversity

and coding. We vary the parameters L and r =k /n, the diversity level and code rate, so the

k logoM

relationship that we keep fixed is R = vé
n

. In Figure 3.9. the systems we compare are: a

system with a (32. 4) R-S code and L =1, a system with a (32. 8) R-S code and L =2. and a sys-
tem with a (32. 16) R-S code and L =4. All three schemes use clipped linear combining with
C=B. The desired bit error rate is 1-107% and the signal to quiescent noise ratio is
E, /N ,=18dB. Undoubtedly, the system with the higher rate code and diversity is better than
the system with the low rate code and no diversity in terms of both Pmin and the maximum bit
energy to noise ratio. Note that the scheme with L =4 and a (32, 16) rate code is a concatenated
code with total block length 128. We would expect a (128. 16) code to be superior to the
(32.16) code with L =4, and the (128, 16) code has a higher rate. However. a block code of
length 128 is more complex to decode than the length 32 code. As long as the diversity combin-

ing scheme is not complex, diversity is a simple way to increase the block length of the

“overall’ code.
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e CHAPTER 4
! THE RATIO STATISTIC AND DIVERSITY COMBINING )
One diversity combining technique that has been shown to be effective against partial- -

band interference uses a ratio statistic as a measure of the quality of a given diversity reeep-
tion. Viterbi introduced the use of the ratio statistic in a ratio threshold test as a robust tech- ;:
nique to use for protection against partial-band interference and tone jamming [8]. In [9] and
[10]. a form of the ratio threshold test is analyzed from an information theoretic point of view.

The primary performance measures used in [9] and [10] are channel capacity and cutoff rate. =

In this chapter, we compare several diversity combining techniques that use a ratio statis-
tic in conjunction with diversity combining. We evaluate the error probability for each scheme g
proposed. We use the performance measurements discussed in Chapter 1 10 determine the merit )
of each diversity combining technique. Thus, a diversity combining technique is judged on its

narrowband interference rejection capability and on its signal to noise ratio requirement over

LIS SN
3

the entire range of interference duty factors.

I

A desirable property of the ratio statistic is that the reliability of each diversity reception
is determined independently of other diversity receptions, rather than based on a measurement
such as the average received signal strength over many diversity receptions. That is. the g’
schemes using the ratio statistic may be more “robust” for FH systems in jamming. multiple-
access. and fading environments, where the received signal strength may vary from one diver-

sity reception to the next.

We first examine the ratio threshold test applied in a system with binary orthogonal sig-
naling. The ratio threshold test with linear combining is one diversity combining scheme con- K
sidered. Another diversity combining scheme we analyze uses the ratio threshold test with
majority logic decoding. The motivation for simplifying from a system with M -ary orthogo-

nal signaling to a system with binary orthogonal signaling is that the ratio threshold test with
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linear combining requires extensive computation for systems with M -ary orthogonal signaling.
Therefore, linear combining and majority logic decoding. used in conjunction with the ratio
threshold test, are compared to each other and to clipped linear combining on the basis of their

performance in a system with binary orthogonal signaling.

In a diversity scheme that employs the ratio threshold technique in a system with binary
orthogonal signaling, the ratio statistic is T;=max(R,,.R,;)/min(R,,.R, ;) for each
1! €L. The ratio statistic for each diversity reception is compared to a threshold. The thres-
hold, denoted by 0, is a fixed number greater than 1; 8 does not depend on the signal strength at
the receiver. If 7, is larger than 0. the diversity reception is accepted. and if 7, is smaller than
0. the diversity reception is rejected. The test is based on the fact that a diversity reception
that has strong interference present is likely to have nearly equal energy in both envelope

detector outputs: such a diversity reception is rejected by ratio threshold test.

We also discuss the ratio threshold test applied in a system with M -ary orthogonal sig-
naling. For a system with M -ary orthogonal signaling. the ratio statistic T, for the [ -th diver-
sity reception is the ratio of the largest envelope detector output to the second largest envelope
detector output. The ratio statistic is compared to the threshold 8 to determine whether or not

to include the diversity reception in the decision process.

4.1 Linear Diversity Combining

In the scheme employing the ratio threshold test with linear combining for a system with
binary orthogonal signaling, the ratio statistic 7, =max(R, ;. R, ,)/min(R,,. R, ,) for each
1<I SL is formed for each diversity reception. If T, is greater than a specified threshoid 6. the
diversity reception is accepted. and if T, is less than 0, the diversity reception is rejected. If at
least one of the diversity receptions is accepted. the accepted diversity receptions are combined.
If all of the diversity receptions are rejected. then all diversity receptions are combined. The
combiner adds the outputs of the envelope detectors of the selected diversity receptions. and

the decision for each bit is made by comparing the sums.
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Consider the situation in which there is no quiescent noise. If the threshold is equal to 1.
every diversity reception is accepted by the ratio threshold test, and the diversity scheme is
standard linear combining with no side information. On the other hand. as 0 increases, more
diversity receptions are rejected by the test. For 0 equal to infinity. the only diversity recep-
tions that are accepted are noise-free diversity receptions. since max(R,,.R,;)#0 and
min(R, ;. R, ;)=0. There is never an error if one or more noise-free diversity receptions are
received. An error can occur only if all of the diversity receptions have interference present.

Thus. for large 0, the diversity scheme approximates linear combining with perfect side infor-

mation.

For the situation in which there is no quiescent noise, the desirable behavior of rejecting
nearly every diversity reception with interference present as 9 increases is not reflected in the

value of p° for this scheme. We have that
p =1=(1—=p, VL (4.1)

for the ratio threshold technique and linear combining. which is the same as p° for standard
linear combining with no side information. That is. considering the worst-case pulsed interfer-
ence, an error can occur even if only one diversity reception has interference present. However,

the value of p,, for Gaussian interference is expected to depend on @ and to be greater than p .

In the presence of quiescent noise, all of the diversity receptions are rejected for 0 equal to
infinity. Thus, the ratio threshold test with linear combining reduces to standard linear combin-
ing (no side information) as 8 approaches 1 or as 8 approaches oo. It is at intermediate values of

6 where the ratio threshold technique may be an improvement over linear combining.

We now derive the bit error probability p, for the ratio threshold test with linear com-
bining. There are two different ways a diversity reception with interference can be accepted.

Suppose that svmbol O is sent. and let

2. =P(R, . >R, . G)QP(R,) ; >R, .0 | interference + noise present)

A i\ B Shes e e el A Aath At A Aok daa ol
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and

p.=PI(R, >Ry 0)2P(R, >R, 0 | interference + noise present).

The sum of p. and p, is the probability that a diversity reception with interference is accepted.
Thus, 1 — p. — p, is the probability that a diversity reception with interference is rejected.

The probabilities p. and p, may be written as [10]

L - 62 expi{—v,*/(2(1462))}
1+6?

P

(4.2)
and

exp{—v;202/(2(1+62))}

Pe = 1462

(4.3)

where v; is defined in (3.4).

Similarly, there are two different ways a diversity reception with interference absent can
be accepted. We define the quantities p, and p, for divers y receptions with interference
absent by replacing v; by vy in (4.2) and (4.3), respectively. For =1, p, and p,. are the pro-
bability of correct reception and the probability of error for a system with binary orthogonal

signaling and no diversity in additive white Gaussian noise. The probability that Ry, >R, ,0

for a given diversity reception is

P- = pp. +(1-p)p, . (4.4)
and the probability that R; ; >R, ;0 for a given diversity reception is

Pz =pp, +(1-p)p., . (4.5)
Thus. the probability that a diversity reception is rejected is 1—P- —P; .

The probability of error for a system using the ratio threshold technique with linear

diversily combining can b2 written as
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L L-n
=2 LC(L:m.n.L~n—m)PPPE(1—Pz—P:}X""" P(e:m.n), (4.6)

n =0 m=0
where C(N: N, N,. ... N,) is the multinomial coefficient defined as N V(N (!N - N,!) for

X N;=N. The term P(e:m,n) is the probability of error given that n +m diversity recep-

i=1

tions are accepted; n of the accepted diversity receptions have Ry ; >R, ;0 and m of the

accepted diversity receptions have R; ; >R, ;0. The number L ~m —n is the number of diver-
sity receptions that are rejected. If m =n =0, then all the diversity receptions are linearly com-

bined. Otherwise, only the accepted diversity receptions are linearly combined.

First consider P(e:m.n) when m 0 or n 0. To compute this conditional probability
of error, let Z denote the difference Ry ,—R; ;. With probability p. interference is present on
a diversity reception, and with probability 1—p, interference is absent on a diversity reception.
Thus, we may derive the density for Z by using a p-mixture model for the interference. That
is. the density for Z may be written as p times the conditional density for Z given that the
interference is present. plus 1—p times the conditional density for Z given that the interference
is absent. We consider the two ways a diversity reception can be accepted, and find the condi-
tional density for Z given each of these. Thus, we compute the conditional density of Z given
that Ry ; >R ;0. denoted by f; (z| Ry, >R, ,0). and the conditional density of Z given that

R, >R, 0. denoted by f, (z| Ry, >R ,0).

First consider the situation in which interference is present. Suppose f 0 . (x.y) is the
conditional joint density of R,, and R,, given that interference is present. so that
fq‘f (x.v|Ry ;>R ,0) is the conditional joint density of R,, and R,, given that
Ry, >R, ,0 and that interference is present. Similarly., suppose f.;‘.:l (x.v) and
f-i‘,/x (x.y|Ro:>R ,0) are the corresponding conditional densities given that interference is

absent. Then. for the p-mixture modei for the interference, we may write
f(_’ l(x .Y ]R.)'_/ >Rl,.'9) = pf\)I 1 (x . _V‘ RO,I >R119) -+ (l-p)f(;v] (x N yl RO,I >Rl,.'9)' (47)

and

:’r‘(.f'..r.-l,‘-

—
R
L
T 9
"
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fz(leO.l >R1'19) =f fO, l(u +2.U|Ro’1 >R;,,9)du.

Using a form of Bayes’ rule {21]. note that -

PI(RO',>R1_¢9|R011=x.R1'l=y)f_;‘1(x.y) :"
P '

folll(x.y]Ro_,>Rl',9)=

The probability P/(Ry,; >R, ;0| Ry ,=x.Ry,;=y) is trivial: it is unity over the region

x >y and is O otherwise. Also, because the signals are orthogonal. the density f é L (x.y)is PR

the product of f /(x)and f!(y). the marginal densities of the envelope detector outputs given

that the interference is present. defined in (3.6) and (3.7). After using Bayes' rule on the den-

sity fgl (x.y|Ro, >R, ,0). we can write (4.8) as

fz(:|R0.1>R“9)= f‘l(e_” ;p_fol(u+:)f11(u)+ (l;p) fo‘v(u+: )fl'v(u) du, z >0,

0 (4 r

(4.9)

where the limits on the integration were found by examining the region in which re

f, (x. ¥Ry, >R, ,0) is nonzero. A similar derivation shows that the density of Z condi-

tionedon R, , >R, ,0is

Rt e

2GRy > Ro 0= [0 L 1 f [ ume) # 2 £ o)f ¥ e a2 <0,

(4.10) -

Once we have computed the densities in (4.9) and (4.10), the density function for the sum

of the Z for accepted diversity receptions, denoted by f ({i m.n). is the convolution of the

(n—1)-fold self-convolution of f, (= | Ry, >R, ;0) with the (m —1)-fold self-convolution of =t

f.(zIR; >Ry ,8). (Recall that an r -fold self convolution of f is f if » =0.itis f*f if .

r=1.etc. It is 8(-) if r ==1.) The conditional probability of error P{e:m, n) is the integral of

f (§:m . n)over all negative values of {, provided that m #0 or n #0. i
The conditional probability of error Ple:0.0) in (4.6) is the probability of error given ..

that all of the diversity receptions are rejected by the ratio threshold test. We need to find the
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conditional density f, (z]6! < Ry /R, , <6). By using Bayes' rule as before and after

. finding the appropriate limits of integration. we can write the conditional density for Z as

f,(z2]671 <R /Ry, <6) 4
B :
- 3 P ) )+ — 2P N uaz)f Y G) e, 220 _
' z /(8=1) I_Pc —P. fo fl 1=p, —p. fo fl T

= (4.11)
- = —P ’(u)f’(u-v)+_ﬂ_ Nu)f ¥(u=z)[du., :z<0.
jz./(l-e) 1-p. —p. fo 1 1=p,=p. fo 1

r[". The probability P(e: 0, 0) is found by taking the (L —1)-fold self-convolution of the condi- -

tional density for Z in (4.11), and then integrating the resulting density from —oo to O.

In the numerical calculation of p, for the ratio threshold test and linear combining, we

. " can normalize the density functions in (4.9)-(4.11) with respect to oy so that p, isaf unction
of p. L. 8. E,/N,, and E,/N;. We do not need to specify the signal output voltage B or the

o noise densities N, and N; explicitly. Due to the normalization. the ratio oy /0; is involved in

- the calculation, but this ratio is just v; /vy . where v; and vy are defined in (3.4) and (3.5).

4.2 Majority Logic Decoding

Another diversity combining scheme based on the ratio threshold test uses majority logic
decoding for a system with binary orthogonal signaling. A hard decision is made on each
accepted diversity reception. The probability that a correct decision is made on an accepted

l‘ diversity reception is P, . defined in (4.4}, and the probability that the decision is incorrect is M

P: . defined in (4.5). The probability that a diversity recepticn is rejected is 1—P; —Pc. After

all L diversity receptions corresponding to the bit are tested. majority logic decoding is used on

[' the accepted diversity receptions. In this scheme, it is assumed that in the case of ties and in

the case in which all of the diversity receptions are rejected. the probability of a correct deci- S

T T U
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sion is -lf Then. the average bit error probability for the ratio threshold test and majority logic

is [10]

- (I‘PE -'PC )L

L L .
5 + 2 (Q=Pg =P )~

i=1

Py

SN ivpmpi-my 1 [fE+1 i+l
m=12‘_"_1_)(m)PEPC t ITI ['2—1(
2

i i 12
iDFPe I (412)
where [x | is defined as the smallest integer greater than or equal to x . and |x | is defined as the
largest integer less than or equal to x. Notice that ties can occur if L is odd. except that ties do

not occur if an odd number of diversity receptions is accepted.

To calculate p° for this scheme, consider interference with arbitrary power and distribu-
tion. The ratio threshold test does not mitigate the worst type of interference. In the absence
of quiescent noise, an error can occur on any diversity reception with interference present, but

an error does not occur on a diversity reception with interference absent. Thus. if interference

L+1

is present on [ ] or more diversity receptions for a given bit, an error is made. Given the

desired bit error probability p, . p  is the solution for p in the equation

- & L. . L
2 Lz:'h(j)pj(l YT (4.13)

5!

;= |
J

A comparison of (4.13) and (4.1) shows that the value of p' for majority logic decoding is

better than p’ for linear combining for L 23.

In Figure 4.1, we demonstrate the sensitivity of the bit error prebability to 6 at small p
for the ratio threshold test with linear combining and for the ratio thresholu test with majority
logic decoding. It is at these small values of the interference cuty factor where the ratio thres-
hold technique is useful. Consider the curves for the ratio threshold test with linear combining
(shown as solid curves in Figure 4.1). Recall .#at for 6=1. the ratio threshold test with linear

combining is equivalent to standard linear combining. In the example shown. there is a value
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of 0 greater than 1 that gives the minimum probability of error for each p<0.2. Thus, for

A ‘.’ '.' .

small interference duty factors, the ratio threshold technique can do better than linear combin-

P SN Y

A8

ing. A threshold of around 6=4 works well for this scheme. For large values of 6, the combin-

‘

frle

ing scheme approximates linear combining because nearly all diversity receptions are rejected

and included in the combining. Thus. the bit error probability p, is the same for 6=1 and

f=co0.

Now consider the curves in Figure 4.1 that correspond to the ratio threshold test and
majority logic decoding (shown as dashed curves). The probability of error is much more sen-
sitive to @ for majority logic decoding than for linear combining. The minimum error probabil-
ity for majority logic decoding is smaller than the minimum for linear combining, which indi-
cates that majority logic decoding can perform better than linear combining against narrowband

interference. A threshold of 8=2 works well for the ratio threshold test and majority logic

_ decoding. The probability of error goes to —1- as 6—oco because nearly all diversity receptions

- are rejected and random decisions are made.

The performance of the ratio threshold test with linear combining is shown in Figure 4.2
for L=1.2. and 3. The curve for L =1 is independent of 6. In terms of narrowband interfer-

ence rejection capability, L =2 is better than L =1. However, L =3 does not improve nar-

rowband interference rejection over L =2.

The performance of the ratio threshold test with majority logic deceding is shown in Fig-
g ure 4.3 for L =1.2. and 3 with =1, and f-r L =2 and L =3 with =2 Narrowband interfer-

ence rejection is improved as the diversity level is increased. For L 23, the ratio threshold test -

‘

*

with majority logic decoding has larger values of pg,, than the ratio threshold test with linear

combining. However., majority logic decoding does not perform as weil as linear combining )

v
o,

against interference which has a large duty factor. -

The inturtive reason for the superiority of majority logic decoding for narrowband

R interierence rejection s illustrated by considering the example with diversity level 3. Consider
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the situation in which three diversity receptions are accepted. Suppose Ry, >R, ;0 for two
diversity receptions. and R; ; >R, , 0 for one diversity reception. There cannot be an error for
majority logic decoding in this situation. However, there is a possibility of an error for linear
combining. A situation that favors linear combining is as follows. Suppose Ry, >R, ;0 for
one diversity reception and R; ; >R, 0 for the other two diversity receptions. A majority
logic decoder makes an error with probability 1 in this situation, while a system that employs
linear combining makes an error with probability less than 1. If p is small, the first situation
bas higher probability than the second situation. Also, other possible situations do not heavily
favor either linear combining or majority logic decoding. For example, the situation in which
two diversity receptions are accepted. one with R, ; >R, ;0 and the other with R, , >R, 0.
does not heavily favor either diversity combining scheme. Furthermore, there cannot be an
error for majority logic decoding or for linear combining for the situation in which all accepted
diversity receptions have R, ;, >R; ;. An error is made with probability 1 by both of the
diversity combining schemes for the situation in which all accepted diversity receptions have
R, ,>R, ;. Thus, we conclude that for L =3, majority logic decoding has an advantage over

linear combining in the presence of narrowband interference.

As the diversity level increases above L =3, majority logic decoding increases its advan-
tage over linear combining in narrowband interference, because there are more situations with
high probability that favor majority logic decoding. For small p. the interference is strong
when il is present on a diversity reception. Majority logic decoding does well in spite of the
strong interference, because errors do not “propagate’ in a majority logic decoding scheme.
However, interference "propagates’” within the sum of L diversity receptions in the linear

ccmbining scheme.

In the next section, we show that p,,, can be increased for the ratio threshold test with
linear combining. The value of E,/V; can be decreased for large values of p for the ratio thres-

hold test with majority logic decoding. This improvement is gained by changing the strategy of
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the linear combining and the majority logic decoding schemes for situations in which all diver-

sity receptions are rejected.

4.3 Variation on Linear Combining and Majority Logic Decoding

The strategy of combining all of the diversity receptions when all are rejected is not
optimum. We may want to use the ratio 7; once again to determine which of the rejected
diversity receptions to combine. In this section, we consider a modiﬁcati.on of the linear com-
bining and the majority logic decoding techniques used with the ratio threshold test. We dis-
cuss the scheme that uses only the diversity reception with the largest ratio statistic for the
situation in which all of the diversity receptions of a given bit are rejected. This variation can

be applied to systems with diversity levels greater than 1.

For the variation on linear combining, we need to recalculate P(e; 0, 0) and incorporate it

into (4.6). For the variation on majority logic decoding. the factor of -.IT in the first term of

(4.12) is replaced by the newly calculated P(e: 0. 0). To begin the analysis of the probability
of error P(e:0.0), we note a few useful facts. Let {Ry,: 1S/ <L} and {R, ,:1SISL}

denote the envelope detector outputs for the L diversity receptions of a given bit and let

Ry
T, =

for each !. Given that all the diversity receptions are rejected. we have that
9.1

d7! < 1, < 0 for all [. Also, for analytical purposes. an error occurs if the symbol O is sent

and max 7, >m;°1x-;—. But, note that max.l— =__!
i {

" . Finally. if the symbol O is sent and
1 T mlm T

all diversity receptions are rejected. there can be no error for mlax 7, < 1 since this would
miply R‘).! > R 1.1 for all l .
We define the random variables U =m[ax T W =m1in 7,.and V=Wl in order to simplify

the expression for the probability of error. We find the p-mixture density and distribution

iunctions of 7, as follows. If the symbol O is sent, 7, is the ratio of a Rayleigh distributed ran-

dom variable to a Rician distributed random variable. Let f‘(¢) and F!(:) denote the

‘3
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conditional density and distribution functions for the 7, given that the interference is present.

Then

x2(t241)4v/?

5 U olvyx)dx, t >0,

ffl(t)=f°°tx3exp{—
[»)

t (2t2424v)?) vit?
= exp{— }, ¢ >0, (4.14a)
(t2+1) P 2(¢%+1)

and
. 2(2241)4v,?
Fﬁ(t)=1-—f xexp{—.x_.-———f..}lo(v,x)dx, t>0,
o 2
1 x2(t2+1)+v?
=1~ expi{— Io(v;x)dx, t >0. (4.14v)
PErT 2 Holvs

where 7,(:) is the O-zh order modified Bessel function. The density and distribution functions
of 7, for a diversity reception with interference absent, denoted by f ¥(z) and F7 (¢), are

found by replacing v; in (4.14) by vy. We may write the p-mixture density and distribution

functions for 7; as

fle)= pf'r" (¢ )+(l—p)ff"’ (¢). t>0, (4.15a)

and

Flt)= pFr’ (¢ )+(1=p)F ¥ (z). t >0. (4.15v)

The bit error probability given that all the diversity receptions are rejected can be

expressed as

P(e:0.0)=PWU>V|0'<W<U.,1<U <8) - P(U>1|67'<U <9)

_ PtV <l . 1<U<8)  PO<UH)
PO7I<W <U.1<U <) P(O7'<U <)

(4.16)

The joint density function of U and V, the joint density function of U and W, and the distribu-
tion function of U. which can be written in terms of f (t) and F (z) in (4.15). are required to

solve (4.16). The distribution function of U is just [F («)]*. Thus. we may write



(F @) —{F (D}

PWU >0 8) = . 17
W<V <= i or (17

The joint density function of U and W is
fo w (uw)=L(L-D[F (u )—F (w Y2 f,@)f (w), 0<w <u <oo, (4.18)

and by making a typical transformation of variables. we can write the joint density function of

Uand V=Wlas
fu v (wv)=L(L —l)v‘z[Ff(u )—Ff(v -2 f (u )ff(v“‘). 0<u~l<v <oco. (4.19)

Using the joint densities given in (4.18) and (4.19), we have that

fef “f, (@wv)dv du
PUSV|0I<W<U. 1<U <@) = L+

. . (4.20)
-II.T-{;-I fu,w(u .w)dw du

The desired conditional probability of error is found by substituting (4.17) and (4.20) into

(4.16).

Comparisons are made in Figures 4.4 and 4.5 among the diversity combining schemes
which use the ratio threshold test. Clipped linear combining is also included in the comparison.
In Figure 4.4, the diversity level is L =2. For small p, all of the combining techniques using the
ratio threshold test perform better than standard linear combining (§=1). The variation on
linear combining with the ratio threshold test has the best value of pp,. and. for large values

of p. its performance is about the same as that of standard linear combining.

Figure 4.5 gives a comparison of the diversity combining schemes for diversity level 3.
Majority logic decoding is the better scheme, out of those using the ratio threshold test. to
employv for narrowband interference rejection. The variation on majority logic gives more than
1dB improvement over majority logic decoding without the variation for large interference
duty factors. The performance of the ratio threshold test with linear combining is disappoint-
ing. Although the variation on linear combining has a better value of pn,, than linear combin-

ing without the variation. there is no improvement for diversity L =3 over L =2.
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Figures 4.4 and 4.5 illustrate that clipped linear combining is better than the ratio thres-
hold technique in terms of narrowband interference rejection capability. However. the ratio
threshold test with diversity is an improvement over standard linear combining. The ratio
threshold test with majority logic decoding appears to be a good technique for systems with no
side information. Although p,;, for the ratio threshold technique is not as high as ppy,, for
clipped linear combining, implementation considerations may favor the ratio threshold tech-
nique. That is, there are situations in which it may be difficult to set the clipping level for

clipped linear combining, but in which the ratio threshold test would still work.

It should be noted that for the diversity scheme employing the ratio threshold test with
the variation on majority logic decoding, the error probability is not as sensitive 1o the thres-
hold 8 as it is in Figure 4.1 for the scheme with the ratio threshold test with majority logic
decoding without the variation. Figure 4.6 presents curves for the sensitivity of p, to 8 for the
ratio threshold test with the variation on majority logic decoding. A value of 6 within the
range of 2 to 4 works well for this scheme. Larger values of 8 work tetter for majority logic
decoding with the variation than for majority logic decoding without the variation. This is
because for the situation in which all of the di;/ersity receptions are rejected, a more probable
situation for larger values of 0. it is better to apply the variation than to make a random deci-
sion. Notice that the minimum error probability p, over the range of 9 is smaller for the

curves of Figure 4.6 than for the curves of Figure 4.1.

4.4 The Ratio Threshold Test for M-ary Orthogonal Signaling

In this section. we analyze a diversity combining scheme that uses the ratio threshold test
for a svstem with M -ary orthogonal signaling. The ratio statistic I"; for the [-th diversity
reception is the ratio of the largest envelope detector output to the second largest envelope
detecior output. As before, if 7, >8. the [ -th diversity reception is accepted. and. if 7, <. the

diversity reception is rejected. A hard decision is made on each accepted diversity reception. If

there is at least one accepted diversity reception. the symbol that corresyonds to the envelope
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detector output with the maximum number of decisions in its favor is chosen. By a tie. we
mean that two or more symbols have the same number of decisions in their favor, and all other
symbols have a smaller number of decisions in their favor. In the case of a tie, a random deci-
sion is made among the symbols involved in the tie. If all of the diversity receptions are

rejected. then the decision is based on the diversity reception with the largest ratio statistic.

Suppose the symbol O is sent. The envelope detector output R, ,; for the [ -th diversity
reception is a Rician distributed random variable, and the other M —1 envelope detector outputs
are Rayleigh distributed random variables. For each value of {. form the order statistics for

the M —1 Rayleigh distributed envelope detector outputs as follows:
Rn.2Rp 2 ZRy-p.1- (4.21)

Three of the envelope detector outputs are of importance in determining the distribution of the
ratio statistic 7. R(y), will always be a component of the ratio statistic. The larger of the
envelope detector outputs R, ; and R ;) , will be the other envelope detector involved in the
ratio statistic. The [-th diversity reception is accepted if R(y) ;/max(R, . R(s) ) is either

greater than 0 or less than 67!, Otherwise, the { -th diversity reception is rejected.

We need to calculate the probability that a diversity reception is accepted or rejected for
M -ary orthogon. signaling. Consider a diversity reception with interference present. There
are two different ways this diversity reception can be accepted. Assuming the symbol O is sent,

it is desirable that R, ; >R () ;8. and undesirable that Ry , >8max(R, ;. R ;). Let
p. =PI (Ry, ;>R 0)

and
pe =PI(R(, >0max(R, . R(5 1))

Let f/(x) and F](x) denote the conditional density and distribution functions for R, , given
that the interference is present. Let /'L"(x ) and FZ_"(x ) denote the conditional density and distri-

bution functions for each of the other envelope detector outputs {R; ,: 1Sk SM =1, 1</ &L}
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given that the interference is present. Then, the the conditional distribution function for Ry

given that the interference is present is

Fl (x)= PAED) i

The conditional joint density function for R ;) , and R 3, is [22]

f(lz)_ n (x.y)=(M-1)XM —2)[1";’(:: )]‘"'3fk’(x )fkl(y ).
Thus, we can write p. and p, as

e = [ IEGOOP11 L o ax. (4.22)
and

p. =P (R(1y;>R0.0 [ R(1).,>R(3,6)

=PHR) (>Re.0) PI(R (1) >R (3),0)

= [1 - L' PR M - f [ (x )dxH(M-—l) .( TE (=6~ )M2f H(x ddx| (4.23)

The sum of p. and p, is the probability that a diversity reception with interference is accepted.
Thus, 1 — p. — p, is the probability that a diversity reception with interference is rejected.
Note that the integrals in (4.22) and (4.23) can be written as sums of terms of alternating

signs. For example, (4.22) may be written as

M =1

62 vin
= .—1 i —an
pe = L1 —enpl !

2(n +62)
However, we choose to keep the expressions in integral form to avoid numerical problems that
arise in calculations of the sums for M >16 due to alternating signs on numbers with large

magnitudes [23).

There are two different ways a diversity reception with interference absent can be
accepted. We define the quantities p, and p, for diversity receptions with interference absent
by replacing f (x). F/(x). and f [ (x) by f¥(x). F¥(x). and f > (x). respectively. in (4.22)

and (4.23). For 8=1, p, and p, are the probability of correct reception and the probability of
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error for M -ary orthogonal signaling in additive white Gaussian noise with no diversity. Using
| ] the p-mixture model for the interference. we can write the probability that Ry, >Ry, ,0 fora

given diversity reception as

= Pe = pp, +(1—p)p, . (4.24)

and the probability that R (), >0max(R, . R () () for a given diversity reception as
Pz = pp, +(1-p)p., . (4.25)
Thus, the probability that a diversity reception is rejected is 1—Pc —Pz .

We now derive the conditional probability of symbol error given that at least one of the
L diversity receptions is accepted. Let i >0 denote the number of diversity receptions that are
accepted. Let m denote the number of diversity receptions with R}y, >0max(Rq ;. R (3 ;).
Thus. i =m is the number of diversity receptions with R, >R('1)_,9. A hard decision is made
on each of the accepted diversity receptions. Then the envelope detector output with the max-
imum number of decisions in its favor is chosen. An error occurs if movre than i —m of them
diversity receptions with R ({, ,>0max(R, ;. R, ;) favor the same symbol. That is. if say the
k -th envelope detector output R, ;, = R/, for i =m +1 or more accepted diversity receptions.

then an error occurs. Note that if i =m . an error occurs with probability 1. Also. note that m

must be greater than or equal to i —m +1. which implies m ?['—;1-] for an er-or to be possible.

Let p(e: M —1.m.i—m) denote the conditional probability that i —=m +1 or more of the
m diversity receptions with Ry, ,>8max(R, ;. R.5 ;) favor the same svmbol. This probabil-
ity is conditioned on the event that m diversity receptions have R, ; >0max(R,,. R/ ;).
i —m diversity receptions have R, ; >R;,.,.and i >1. To find p{e: M—=1.m.i—m), consider
the problem of distributing m indistinguishable balls randomly among M —1 distinct boxes.
The probability p(e; M —1.m.i—m ) is the same as the probability that at least one of M —1
boxes holds at least i —m +1 balls. This analog to our problem applies because the random vari-

ables R, . are identically distributed and statistically independent for each k #0. and for each




72

[. The probability that R, ; = R(), for the ! -th diversity reception is equal to (M —~1)~! for
each k 0. In our model, a ball placed in the k -th box represents the situation in which the

k -th envelope detector output is the maximum.

There are (M —1, m ) total ways to distribute m balls in M —1 boxes, where
wg.r)2@E* D, (4.26)

For our problem, we need to find what number of these combinations meet the condition that
there is at least one box which holds i =m +1 or more balls. Alternatively. we can find the
number of ways to distribute m balls among M —1 boxes so there are no more than i —m balls
in any given box. and subtract this result from the total number of combinations. This alter-
native view is a problem of unordered sampling with limited replacement. ’The solution to
such a problem is the coefficient of ¢™ in the generating function (1+¢ + - - - +¢~™ )Y =1 [24],

The desired coefficient for our problem is (M —1.m, i —m ), where

! ’
g.r.s)= I (-1) (o ks 2k g =1y (3.27)

We define (0, 0, s )=1 and (';)'—'O for y <0. Note that if r >gs. (4.27) is equal to zero. That

is. the number of balls must not be more than the number of boxes times the capacity of a box.
Thus. if m >(M —1)(i =m ). then there are O combinations of balls in boxes that meet our

requirement of no more than i —m balls in any given box.

The conditional symbol error probability given that m diversity receptions have
Ry, 26max(R, ;. R() ;). i =m diversity receptions have Ry, >R 'y, 0. and i >0 (excluding
ties involving the symbol 0) may be written as

M -1
1; >l
v

nM=1,m,i-m) M=t
1- cm Mt
A =1.m) ™Ry

ple:M=1.m.i-m)=
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The symbol error probability for i >0 (excluding ties involving the symbol 0) is

li M-1 ,
4 N Ly .
PsE= i§l(l{)(l ~Pg =P )}~ Z‘_H (;)P,-:’-"Pé‘”'p (e;:M=1.m. i~m)
=~

+ X (,f,)Pé"Pc"""- (4.29)
Kt

Next we calculate the symbol error probability due to ties for i >0. Recall that in a tie.
two or more symbols have the same number of decisions in their favor, and all other symbols
have a smaller number of decisions in their favor. We are only concerned with ties involving
the symbol 0. Ties that occur among the other M —1 symbols result in a symbol error. and this

situation is included in the expression in (4.29).

A Iwo-way tie is a tie between the symbol O and any one of the other M —1 symbois.
Returning to the model of the balls in the boxes, a two-way tie occurs if exactly one of the
M —1 boxes contains exactly i —m balls, and the remaining M =2 boxes each have less than
i —m balls. Assume that the £ -th box holds i =m balls. Then there are 2m —i balls left to dis-

tribute among the remaining .M —2 boxes. For there to be at least one combination possible. m

i(M—=1)~(M=-2)

77 |. The lower limit on m is due to the fact
4

must meet the condition [-;-iSm |

that 2m —i 20 for a two-way tie to be possible. The upper litit on m is derived from the con-
dition that » €¢gs for n(g.r,s)>0. Another requirement for a two-way tie is that i, the
number of accepted diversity receptions, must be greater than 1. We assume that a random

guess is made if a tie occurs. Thus. the probability of error given that there is a two-way tie is

|.,l —

. The probability of a two-way tie times the probability of error given that there is a two-

way tie is




LM =D=M -2)
xl - — Y - —_
-;—(M-l) 5 nM-=2,2m—i,i~m-1) .

v M=1.m)

m =izl

A three-way tie is a tie among the symbol 0 and any two of the other M —1 symbols. For
a three-way tie to occur, M and i must be greater than or equal to 3. The probability of a

]
three-way tie times the probability of error given that a three-way tie occurs is

ll(M 1)—(M—3)l
T — - - -_ -
_2_(1V12 1 > n(M~-3,3m=2i,i—m 1)

vM—-—1m)

2.
m={31|

By continuing on with this pattern, we find that the symbol error probability due to ties can be

written as

& L
= 2 ()1 —Pp—Pc )t

i=2 i=1

min(i =1 VW -1) j (1\4"1)

M =03 =1y
{ ( )‘T)(M 1-j.m—ji-m), i-m-—1)

iy v M~=1,m)

J+1

PEPL™™. (4.30)

Finally. we consider the case in which i =0. When all of the diversity receptions are
rejected, a randoin decision is made. Thus. the symbol error probability given that all of the
diversity receptions are rejected times the probability that all of the diversity receptions are

v

rejected is

s =(1 =P -PC)L.M_;L (4.31)

4

Then. the symtol error probability for the system with the ratio threshold test for M -ary

orthogonal sigraling is given by
s =ps.£+p;,T+P:,R~ (432)

The variaiion discussed in Section 4.3 may be applied in this scheme. That is. for the

situation in which all diversity receptions are rejected. the decision may be based on the
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diversity reception with the largest ratio. The derivation for the probability of error for this
- situation is set up in Section 4.3. We only need to calculate the density and distribution func-

tions f (¢ ) and F (¢ ) for M -ary orthogonal signaling, where 7, is now defined as

- LI,
maX(R 0.1 R ('2)' ! )

for each 1</ €L. First, consider the conditional distribution of 7, given that the interference
is present. The conditional density and distribution functions for 7,. given that the interfer-

ence is present, may be writlen as

flGa)=f1(t|Ro,>R(1) )P (Ro>R(y).,)
+ fI|R2),  <Ro . <R(1), P (R(3) . <Ro . <R(n)..)

+ fI(|Ry <R IPI(Ro <Rz ,) (4.332)

and

FI(e)=F!(t|Ro,>R(1) )P (Ro 1 >R(1y1)
+ FI(t|R2). <Ry (<R(1), )P (R <Ry ;<Ru))

+ FI(t|Ro <R3y JPT (R0, <R(3)1): (4.33b)

AP & 2 4”8 21 k. 2N ‘, ,'-'
LI I T A SR ORI

Each conditional density and distribution function given in (4.33) involves an integral with a

complicated integrand. so that it is not trivial to compute (4.33) numerically. For example, we
may write
fI(e|Ro <R3y DPT(Ry <R (p,1)
=(M-1)VM -2)_/"”,: (FHx M3 Ax ) f flix )f YfH(y)dydx . 0 21
0 £ A A 1) '
To compute f £(¢ ) and FZ(¢). it is necessary to compute six such integrals. Also. similar com-

putations must be done for f ¥ (z) and F¥ (¢). Then. the p-mixture density and distribution

functions for 7, should be formed as in (4.15). Finally, the resulting density and distribution
functions for 7, should be substituted into (4.16)-(4.20) 1o compute p, » for the variation.

Because of the lengthy computation required for the variation. our numerical results do not




include examples of this diversity combining scheme. Instead. we use p; p provided in (4.31).

{ Figure 4.7 illustrates the sensitivity of the symbol error probability p; to the threshold 6
for three values of M. The symbol error probability is very sensitive to the threshold. The
scheme with the ratio threshold test for M -ary orthogonal signaling works well for small
values of 0. and it works poorly for values of 8 greater than 3. Care must be taken to choose a
good value for the threshold. Figure 4.8 gives another analysis of the sensitivity to 8. The
solid curves correspond to the performance of the ratio threshold test with 32-ary orthogonal
signaling for 6=1.01. 6=1.3, and #=1.7. The signal to noise ratio requirement decreases with 6.

However, p_;. also decreases with .

The other curves included in Figure 4.8 are for clipped linear combining with C =8

(shown as the dashed curve), and for optimum combining for receivers with perfect side infor-

mation (shown as the dotted curve). The value of py, is greater for the ratio threshold test

> than it is for clipped linear combining in this example. But, this is at the expense of a high sig-
& nal to noise ratio requirement. Recall, however, that the value of 9 is chosen by the communi-
cations system designer, but the clipping level for clipped linear combining may vary due to the
communications channel. We see from Figure 3.5 that the sensitivity of clipped linear combin-
ing to the clipping level has a similar behavior t'o the sensitivity of ratio threshold test to the

threshold. but that this sensitivity is not in the hands of the system desigrer.

The curves in Figure 4.9 are for three values of M ; namely, M =2, M =8, and M =32. The
best value of pp,, is for 32-ary orthogonal signaling. Both M =8 and M =32 are superior 10

M =2 for this example. However, there are examples in which M =2 is better than larger

values of M. That is, there are values of 0 that work better for the ratio threshold test with
majority logic decoding than for M -ary orthogonal signaling. This fact is illustrated in Figure
4.7. However, the values of 8 that work better for binary orthogonal signaling than for larger a*

values of M, do not give good performance for any of the signaling schemes.
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Figure 4.10 gives curves for the ratio threshold test with 32-ary orthogonal signaling, and
curves for optimum combining, for diversity levels 3 and 5. The value of py,, for the ratio
threshold test may be close to the value of p* (and pp,) for optimum combining, but the signal
to noise ratio requirement for large values of p is as much as 5dB more for the suboptimal
scheme. In spite of this larger requirement in signal to noise ratio, we conclude that the ratio
threshold test for M -ary orthogonal signaling (including M =2 and the majority logic decoding
scheme) is a good technique for systems without side information in the presence of partial-

band interference. The narrowband interference reiection capability can be nearly as good as it

is for systems with perfect side information.




Ay
[

e

v -l' s-

LY
.

PRIV
™ e
PP

LA N

Bit energy to noise density ratio. &, /N, (di3)

81

1@

o~ Ratio threshold test
=+ ++=> Optimum combining

o 6 @ @ & 0 GO a0 .

PRLE
- ®
e *

..,‘0004000~¢1
-

B2

1 r [ !
4 @6

Interference duty factor, p

naling versus optimum combining for L =3 and L =5

Figure 4.10. Bit energy 1o noise density ratio versus interference duty factor for 6=1.3,
p: =0.1, and E, /N 4=18dB for the ratio threshold test for 32-ary orthogonal sig-

.-
A I}

U N R A A T



82
CHAPTER §

NONSELECTIVE FADING CHANNELS

In addition to partial-band interference, the communication channel may exhibit fading.
In this chapter. we investigate the performance of the diversity combining schemes proposed in

Chapter 4 for channels with partial-band interference and nonselective Rician fading.

5.1 Channel Model

In our model, we assume that the diversity receptions fade independently. In making this
assumption for a system that uses frequency diversity, we are implying that the fading channel
is characterized by frequency-selective fading. The correlation bandwidth of a frequency-
selective fading channel is a parameter which describes how far apart two frequencies should
be for the fading processes on these frequencies to be uncorrelated {25]. In an FH system, it is
possible that the smallest spacing between adjacent frequency slots will not be be greater than
the correlation bandwidth of the fading channel. But, it is not likely that the diversity
transmissions for the same symbol will be sent over adjacent frequency slots. In fact, we may
wish to design the hopping pattern to avoid this. Thus., by assuming that the diversity recep-
tions fade independently. we are assuming that the smallest spacing between the frequency
slots used by the diversity transmissions of the same symbol is larger than the correlation

bandwidth of the channel.

We also assume that the fading is nonselective on each diversity reception. This assump-
tion is valid as long as the bandwidth used by a given diversity transmission is much smaller
than the correlation bandwidth of the fading channel. Thus, the wideband channel of the FH
system is modeled as a group of independent narrowband channels, each with nonselective fad-

ing. We consider nonselective Rician fading.

For the channel with Rician fading and partial-band interference, we can describe each

diversity reception as a signal with four components. Two components of the diversity

[

. M
.
LA
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reception are different versions of the diversity transmission: a non-faded version ax;d a
Rayleigh-faded version. The sum of these two components can be thought of as one Rician
faded component. The fading attenuates the signal amplitude with a Rician distributed random
variable [15]. The third compenent of the diversity reception is due to the Gaussian partial-

band interference. Finally. the fourth component of the diversity reception is additive white

Gaussian noise.

The density function for the amplitude of the received signal on a Rician fading channel is

a+b?
202

f, (a) = —a?exp{— }Io(ib;-). a >0. (5.1)
. p p.

The quantity 52 is the signal strength of the non-faded or specular component, and 202 is the
mean-squared value of the signal strength of the Rayleigh-faded or scatter component. Thus,

the mean-squared signal strength of the sum of the two components is 52+207. The ratio

A, 4 . . .
y*220%/b2 is the ratio of the mean-squared value of the signal strength of the scatter com-
ponent to the signal strength of the specular component. For y*=co, the channel model is a

Rayleigh fading channel. For y°=0, there is no fading (only a constant attenuation equal to b )

[26]-[28].

We use the performance measures described in Chapter 1 and used throughout Chapters
2-4. We define py,, to be the largest number such that a given error probability can be
achieved in the presence of Gaussian quiescent noise. fading, and Gaussian partial-band
interference with any duty factor less than this number. This parameter is useful in describing
the system’s narrowband interference rejection capability. We are also interested in the max-

imum signal to noise ratio required to achieve a desired error probability over tae entire range

of interference duty factors.

5.2 Clipped Linear Combining

As emphasized in Chapter 3. knowledge of the signal output voltage is required in order

to effectively employ clipped linear combining. For a frequency-hop system. the signal output
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voltage may vary significantly from one frequency to the next because of different propagation
characteristics of the communication channel at different frequencies. On a fading channel. the
signal strength of any given diversity reception may vary significantly from the root-mean-
squared signal strength. Thus. it may be difficult to establish the clipping level for frequency-

hop communications over fading channels.

In a fading environment, effective communication makes use of the diversity receptions
that have strong signal. However, a clipper tends to limit the diversity receptions that have
strong signal in an attempt to limit the diversity receptions with partial-band interference.

Thus. clipped linear combining is not useful for communications over fading channels.

The diversity combining schemes that use the ratio threshold test do not require the esti-
mation of the signal strength. The threshold involved in the ratio threshold test is independent
of the received signal output voltage. and the measure of the quality of a given diversity recep-
tion depends only on that diversity reception. Also, diversity receptions with strong signal are
not likely to be rejected by the ratio threshold test. In the remainder of this chapter, we inves-
tigate the performance of the diversity combining schemes which use the ratio threshold test

with diversity for FH systems subject to fading and partial-band interference.

5.3 The Ratio Threshold Test with Diversity Combining

First, we derive the probability of error for the system employing the ratio threshold test
with the variation on linear combining. The analysis is for a system with binary orthogonal
signaling. The probability of error has the same form as in Chapter 4, but most of the quanti-
ties must be modified to take into account the effects of fading. The densities f {(x) and

f ¥ (x). which do not depend on v; or vy, remain the same.
Let T/ denote the average received signal to noise ratio given that interference is present.

2 E E,
For a Rician fading channel, I'; =(b2+20'2)v71. Let 87=(b 2+20'2)V—b and B3 =(b2+20'2)v—b.
vy Vo

1 lngM
Fi+pIBY?

Then [/=

Y First, we find the quantities p. and p,. By replacing v, by av;
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in (4.2) and (4.3), and then averaging a with respect to the density in (5.1). we obtain

3(y2+1) r?
e =1— exp{— b 5.2
P T2y2+(146%)(y2+1) P A2 +(146%)(y2+1) (52)
and
241 1',292
Pe = T3=05 7 T Pl (o2 ' (5.3)
T2y°0%+(1+62)(y2+1) [ 7y%02+(146%)(y2+1)
: . . . . . P 2 2 logZM
Given that interference is absent. the average received signal to noise ratio is ' =83 ya

The probabilities p, and p, are found by replacing I'; by 'y in (5.2) and (5.3).

Next, we find the density function for Z =R, ;~R, ;. the difference between the envelope
detector outputs. We need to find the conditional density for Z given that Ry >R, ,0. the
conditional density for Z given that R;, >R, ;0. and the conditional density for Z given that
6-1<R /R, ; <9. To find these conditional densities. we need to know the density for R, ;
for a Rician fading channel. Suppose that interference is present on the diversity reception and
that the symbol O is sent. Then the conditional density function for the envelope detector out-

put corresponding to symbol O is

2.2 o 2 20-2+1
filx)=x exp{—x—l-:'—z}f -f-,-exp(—&i_—).}lo(xav, )Io(fi,)d’a. (5.4)
2y 0o O° 20 o

The definite integral in (5.4) can be solved analytically {29], so that f { (x ) may be written as

folx)= x(y*+1) ex —"2(72*'1)"'21‘12 xT;V2(¥*+1)
olx. Ciy?+y?+1 2Ty +y2+1) 0 et

(5.5

The conditional density for R, ; given that interference is absent, f { (x ). is found by replac-
ing Iy by I'y in (5.5). The quantities p.. p,. and f §(x ) presented in (5.2). (5.3), and (5.5).
are substituted into (4.9), (4.10), and (4.11) to find the conditional densities for Z given that
interference is present. The quantities p,. p. . and f ) (x) are substituted into (4.9), (4.10),

and (4.11) to find the conditional densities for Z given that interference is absent. The

et St 4
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resulting conditional densities are used to solve (4.6), except for the term P(e: 0,.0). The vari-
ation on linear combining described in Section 4.3 is used for the situation in which all of the
diversity receptions are rejected. The conditional error probability P(e: 0, 0) is computed for
- this situation.

We compute the conditional error probability given that all of the diversity receptions are

":'. rejected by the ratio threshold test. Recall that for the [ -th diversity reception, 7, is equal to

R
% 1 | The diversity reception with the maximum value of 7, or 7,7 (i. e.. max(max(‘r, )
0.1

Pl e

is used to decide which bit is sent for this situation. The density and distribution functions for
~ 7, for a diversity reception with interference and fading is found by replacing v; by av; in the

density and distribution functions of (4.14a) and (4.14b), and then averaging with respect to

Y riRd’

- the density in (5.1). For a diversity reception with Rician fading and interference. the condi-

tional density and distribution functions are

Tfy2+y2+1 + TA(y?+1) Tfe?

I = 2
fre) =20l @oF =Py

(5.6a)

and

I‘,t2

1 =1 = 5.6b)
F (t) 1 —(Texp{ 77 (

where d (¢ )=T fy* 24+(1+¢2)(y2+1). The conditional density and distribution functions given
that interference is absent, f ¥ (¢) and F¥ (¢ ), are found by substituting I'; by 'y in (5.6).
The functions in (5.6), as well as f ¥ (¢ ) and F¥ (¢ ), are substituted into (4.16) to find the pro-

bability of error given that all of the diversity receptions are rejected.

- The probability of error for the ratio threshold test with the variation on majority logic

. decoding is found by using the derivations provided in Sections 4.2 and 4.3, and the quantities

- derived in the preceding paragraphs of this section. That is. the expressions in (5.2)-(5.3).

. s
P

N (5.6), and the quantities corresponding to diversity receptions with interference absent are sub-

---------
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stituted in the appropriate places in the derivation presented in Sections 4.2 and 4.3.

5.4 Numerical Results

Figures 5.1 and 5.2 show the sensitivity of the probability of error to the threshold 6 for
the diversity combining schemes discussed in Section 5.3. The curves in Figure 5.1 correspond
to the ratio threshold test with the variation on linear combining. Recall that a value of 6=4
works well for the ratio threshold test with linear combining in the presence of partial-band
interference ( ¥2=0). The curves of Figure 5.1 illustrate that for p=0.1, a large value of 8 (e.
g.. 8=6) works well for a channel with both partial-band interference and fading. However.

the error probability is not sensitive to 6.

The curves in Figure 5.2 correspond to the ratio threshold test with the variation on
majority logic decoding. Note that for Rayleigh fading, a value of 8 near 6 gives the minimum
value of p, in the curves shown. For Rician fading, smaller values of 8 are better for small p.
However. the error probability is not very sensitive t0o 8. We use 6=6 for both linear combin-

ing and majority logic decoding in the examples that follow.

Figures 5.3 through 5.5 illustrate the performance of the ratio threshold test with the
variation on linear combining for partial-band interference and fading. Note that the curve for
L =1 is not plotted in Figure 5.3. This is because for B7=18.0dB, a bit error probability of
p» =0.01 cannot be achieved no matter how large B/ is. However. p, =0.01 is achievable for
diversity levels 2 and 3. An average received signal to quiescent noise ratio of 18dB is actually
lower than the average received signal to interference ratio required in the example of Figure
5.3 for most values of p. Thus, the assumption that the quiescent noise level is much less than
the interference level is violated in this example. For the examples in Figures 5.4 and 5.5. we

allow a larger average received signal to quiescent noise ratio.

Recall that for the systera with partial-band interference and no fading. diversity level 3
does not show improvement over diversity level 2 for the examples discussed in Chapter 4. For

the ratio threshold test with the variation on linear combining with partial-band interference
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and fading, increasing the diversity level above L =2 leads to improvement in pg;,. However,
increasing the diversity level also causes the signal to noise ratio requirement for large interfer-

ence duty factors to increase. This increase is less than 1.5dB in the examples shown.

Figures 5.6 through 5.8 give the performance of the ratio threshold test with the variation
on majority logic decoding for partial-ba.n;:l interference and fading. In Figure 5.6, pm, is
smaller for diversity level 4 than it is for diversity level 3. The performance is poor for all
diversity levels because the signal to quiescent noise ratio is too small. Large improvement in
Pmin is seen in Figures 5.7 and 5.8, as the diversity level increases from 1 to 4. The increase in

the signal to noise ratio requirement for large interference duty factors is less than 1.5dB for

each increment in the diversity level.

Note that the curves for diversity level 1 are the same in Figures 5.6 through 5.8 as they
are in the corresponding examples in Figures 5.3 through 5.5. That is. for L =1, the schemes
that use the variation are all the same and. in fact, are independent of 8. The decision is always

based on one diversity reception whether that diversity reception is accepted or rejected by the

ratio threshold test.

Also, note that for Rayleigh fading (y?=c0), the maximum signal to noise ratio required
over the range of interference duty factors occurs at p=1. This is demonstrated in Figures 5.3,
5.4, 5.6. and 5.7. That is, full band interference is the worst-case partial-band inteiference.
This fact is also observed in [10] for the ratio threshold test with majority logic decoding (no

variation), and is demonstrated in other work, such as [30].

Figure 5.9 presents a comparison between the variation on linear combining and the ‘aria-
tion on majority logic decoding for Ravleigh fading. Figure 5.9 also includes the performance of
square-law combining for a receiver with perfect side information (shown as the dotted curve).
which, in Rayleigh fading. is the optimum combining technique. Majority logic decoding is
closer 10 square-law combining at small p. and linear combining is closer to square-law combin-

ing at large p. Majority logic decoding has a significantly better value of pp,, than linear
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combining (more than 0.1 larger in this example). without much tradeoff in the signal to noise

ratio requirement at large p. (The difference in the signal to noise ratio requirement is about
0.5dB in this example.) Thus, the ratio threshold test with the variation on majority logic

decoding can be considered better, or more “robust.”” than the scheme with linear combining.

55 The Ratio Threshold Test for M-ary Orthogonal Signaling

The procedure for calculating the probability of error for the scheme with the ratio thres-
hold test and M -ary orthogonal signaling was presented in Section 4.4. The probability of er-
ror for this scheme in the presence of partial-band interference and fading is found by using the
same procedure. The only quantities that need to be averaged with respect to the density in
(5.1) are the conditional density function for R, , given that interference is present, namely.

5 (x), and the conditional density function for R, ; given that interference is absent, namely.
f ¥ (x). But, the density f 4(x) is already presented in (5.5). and f { (x) is found by replac-
ing I; by 'y in (5.5). These densitiés are substituted into the appropriate places in Section 4.4
to calculate the probability of error for the ratio threshold test with M -ary or:thogonal signal-
ing.

Figure 5.10 presents a comparison of the performance of the ratio threshold test and that
of the optimum combining technique for 32-ary orthogonal signaling and Rayleigh fading. The
optimum technique is square-law combining for a receiver with perfect side information. The
value of pg,, for the ratio threshold test is about 0.5 less than that for the square-law combin-
ing. Thus, the narrowband interference rejection of the ratio threshold test is good. As much
as 55 percent of the frequency band must have interference for the symbol error probability o
be larger than 0.1 for diveisity level 5. For large p. the signal to noise ratio requirement for
the ratio threshold test is about 2.5dB more than it is for square-law combining. However.
note that these numerical results are for the scheme that makes a random decision for the situa-

tion in which all the diversity receptions are rejected. If the variation on this scheme is em-

ployed. the signal to noise ratio requirement at large p will be reduced.
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Figure 5.11 shows the performance of the ratio threshold test for a system with 32-ary
orthogonal signaling and diversity levels 3, 5, and 7. for Rician fading with y®=0.1. The value
of pm, increases with the diversity level, and it is 0.65 for L =7. The curves in this figure
demonstrate the good narrowband interference rejection capability of FH communication sys-

tems that employ diversity transmission and the ratio threshold test.
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CHAPTER 6

CONCLUSIONS

In this thesis, we have analyzed several diversity combining schemes for frequency-hop
communications in the presence of partial-band interference and fading. Each diversity com-
bining technique has been evaluated on its narrowband interference rejection capability and on

its signal to noise ratio requirement over all values of interference duty factors.

We have calculated the exact probability of error for the optimum diversity combining
scheme for a receiver in which perfect side information is available. Several suboptimum
diversity combining schemes for receivers with perfect side information have been compared to
the optimum combining technique. and it has been found that all of these schemes perform
nearly the same. It is the availability of the perfect side information that allows all of these

schemes to perform well in the presence of partial-band interference.

Several diversity combining schemes have been analyzed for receivers without side infor-
mation. Clipped linear combining was shown to be effective against narrowband interference.
It can perform nearly as well as a receiver with perfect side information. A sensitivity
analysis of clipped linear combining has demonstrated that its performance may oe unpredict-

able if the there are large deviations in the signal output voltage (e. g.. more than 3dB).

The ratio threshold test. used in conjunction with diversity combining, has been shown to
be another effective technique for partial-band interference. The ratio threshold test with
majority logic decoding and with M -ary orthogonal signaling work well in terms of nar-
rowband interference rejection. However. in some of the examples shown, the signal to noise
ratio requirement is significantly higher for these schemes than it is for the optimum combining
scheme. Although the ratio threshold test with linear combining provides some narrowband

interference rejection. it does not do so as effectively as the other combining techniques con-

sidered.
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v The diversity combining schemes that employ the ratio threshold test have been analyzed ~
! for partial-band interference and nonselective Rician fading. It has been shown that the ratio ]
NN threshold test with M -ary orthogonal signaling (including M =2 and majority logic decoding) -
E;: provides good narrowband interference rejection. The signal to noise ratio requirement of this :
v scheme for large values of the interference duty factor is much higher (more than 3 dB) than '
;:3 the requirement for square-law combining with perfect side information. the optimum combin-
s ing technique for Rayleigh fading. Although the ratio threshold test with diversity combining ;"
- n

does not achieve the optimum performance, it is an effective. as well as practical. scheme for £

use in FH systems subject to partial-band interference and fading.

.- There are many variations on the diversity combining techniques that use ratio statistics.

One technique that has not been discussed in this thesis is ratio statistic combining. In this

l:_-f scheme, a ratio statistic is formed for each symbol on each diversity reception. The ratio statis- ~
. tics are added. and the symbol with the largest sum is chosen. The analysis of this scheme and .
' of other variations on the ratio threshold test is a topic for further research.
b Although some results have been given in this thesis for general (non-Gaussian) interfer- ;
" ence. as well as for Gaussian partial-band interference. there are othgr models for the interfer-
— ence that could be explored in future work. For example. modeis for multiple-access interfer-
ence could be studied as a class of partial-band interference. Also. the partial-band interference
could be modeled by a generalized Gaussian process [31]. Finally, for the analysis of communi- |
cations via fading channels. the partial-band interference could be modeled as a fading process.
f g
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APPENDIX

METHODS USED TO VERIFY NUMERICAL RESULTS

Most of the numerical results presented in this thesis required extensive numerical com-
putation. The purpose of this Appendix is to describe the tools we used in obtaining the data

and how the programs used to compute the data were verified.

The computer programs were written in Fortran. The computations were done on Digital
Equipment Corporation VAX 11/780 computers. In addition, a Floating Point System’s Array
Processor (AP) with its scientific subroutines was employed. The subroutines on the AP that
were used include vector convolution, vector Simpson's integral. vector multiplication, and vec-
tor multiplication by a scalar. The AP was very instrumental in saving computation time. In
fact. in many cases, there was a savings of computation time by a factor of 10 for programs

that used the AP when compared to programs that did not use the AP.

Examples of curves that required the most computation time include the curves for the
ratio threshold test with the variation on linear combining in Figures 4.5, 5.3, and 5.5 for L =3.
The results in Table 2.2 corresponding 10 the optimum diversity combining technique for L =5.

also used extensive computation time. Other numerical results used less computation time.

To verify that the computer programs were correct, tests were run for special cases of the
problem for which results are found in the literature. In addition, special cases that could also
be compared with other programs that were written independently, were also tested for agree-
ment between the programs. To explain in more detail how the numerical results were verified.
we use as an example the program written for the ratio threshold test with majority logic in
the presence of Rician fading. The case with L =1, 8=1, and p=1, was checked against curves
given in [23] for various yz. and Blz . The case with =1, p=1 and 72=oo (or 1/72=0) was
checked against the curves in Figure 5.5 in [10] for L =2. 4. and 6. The program was tested

against the program for the ratio threshold test with majority logic decoding. no fading. for
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various values of p, 6. L, E,/N,, and E,/N, by Iletting yz become small (e.g..
1/v"=1.000.000).

As another example of how the numerical results were verified. consider the program
written for clipped linear combining. The results obtained for large clipping levels (e.g..
C =78) were compared to the results obtained from the program that computes the perfor-
mance of the ratio threshold test with linear combining with 8=1 for binary orthogonal signal-
ing. Also, the results for large clipping levels were compared with the results from the pro-
gram for standard linear combining with no side information for M -ary orthogonal signaling.
These tests were performed for various diversity levels. The program was also checked against

the analytical example discussed in Section 3.3. for M =2 and L =2.

Similar methods were used to test all other programs that generate data for this thesis.
Although many of the numerical results presented for the values of the signal to noise ratio are

accurate to one hundredth of a dB. in general we claim that our results are accurate to one

tenth of a dB.
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